ECEN5458/Software/python/server.py

263 lines
8.4 KiB
Python
Raw Normal View History

2020-02-26 10:47:21 -07:00
import time
import numpy as np
2020-04-08 14:23:01 -06:00
from scipy import signal
from scipy.signal import TransferFunction
2020-03-02 11:39:07 -07:00
import board
2020-03-02 13:40:42 -07:00
import busio
2020-03-02 11:39:07 -07:00
import digitalio
2020-02-26 10:47:21 -07:00
from adafruit_servokit import ServoKit
2020-03-02 13:39:37 -07:00
import adafruit_ads1x15.ads1015 as ADS
2020-03-02 11:39:07 -07:00
from adafruit_ads1x15.analog_in import AnalogIn
import threading
2020-03-04 00:18:18 -07:00
import os
2020-02-26 10:47:21 -07:00
2020-03-02 14:45:16 -07:00
from bokeh.io import curdoc
from bokeh.layouts import column, row
2020-03-04 00:18:18 -07:00
from bokeh.models import ColumnDataSource, Slider, TextInput, Button, Paragraph
2020-03-02 14:45:16 -07:00
from bokeh.plotting import figure
2020-03-02 21:57:43 -07:00
DEBUG = False
2020-03-04 00:26:48 -07:00
BAT_MUX_CHAN = 9
2020-03-04 00:18:18 -07:00
VBAT_THRESHOLD = 11.0
2020-03-02 16:27:41 -07:00
2020-03-02 20:57:31 -07:00
# Configure MUX for ADC
2020-03-02 15:59:59 -07:00
mux_io = [None] * 4
2020-03-02 18:56:42 -07:00
mux_io[0] = digitalio.DigitalInOut(board.D23)
mux_io[1] = digitalio.DigitalInOut(board.D22)
mux_io[2] = digitalio.DigitalInOut(board.D27)
mux_io[3] = digitalio.DigitalInOut(board.D17)
2020-03-02 15:59:59 -07:00
for ii, io in enumerate(mux_io):
io.switch_to_output()
2020-03-02 20:57:31 -07:00
# Configure ADC
2020-03-02 15:59:59 -07:00
i2c = busio.I2C(board.SCL, board.SDA)
adc = ADS.ADS1015(i2c)
adc_mux = AnalogIn(adc, ADS.P0)
2020-03-02 20:57:31 -07:00
adc_lock = threading.Lock()
# Configure Servo Driver
servos = ServoKit(channels=16).continuous_servo
servos[0].throttle = 0
servos[1].throttle = 0
servos[2].throttle = 0
# Initialize calibration
2020-03-02 22:18:32 -07:00
try:
white_cal = np.loadtxt('cal_white.txt')
2020-03-02 22:19:21 -07:00
except IOError:
2020-03-02 22:18:32 -07:00
white_cal = [0]*8
try:
black_cal = np.loadtxt('cal_black.txt')
2020-03-02 22:19:21 -07:00
except IOError:
2020-03-02 22:18:32 -07:00
black_cal = [5]*8
2020-03-02 15:59:59 -07:00
2020-03-04 00:18:18 -07:00
def get_mux_adc(chan):
2020-03-02 15:59:59 -07:00
global mux_io
global adc_mux
2020-03-02 16:24:01 -07:00
global adc_lock
2020-03-02 20:57:31 -07:00
chan = int(chan)
2020-03-02 15:59:59 -07:00
mux = 1-np.array(list(f"{chan:04b}"), dtype=int)
2020-03-02 16:24:01 -07:00
adc_lock.acquire()
2020-03-02 13:57:55 -07:00
for ii, io in enumerate(mux_io):
2020-03-02 15:59:59 -07:00
io.value = mux[ii]
2020-03-02 16:24:01 -07:00
voltage = adc_mux.voltage
adc_lock.release()
return voltage
2020-03-02 15:22:01 -07:00
2020-03-02 15:59:59 -07:00
def get_normalized_reflectivity(chan):
global white_cal
global black_cal
2020-03-04 00:18:18 -07:00
return (get_mux_adc(chan) - black_cal[chan]) / (white_cal[chan] - black_cal[chan])
2020-03-02 15:22:01 -07:00
2020-03-02 21:06:44 -07:00
# Initialize brightness data
brightness_idx = np.arange(8)
brightness = [get_normalized_reflectivity(c) for c in range(8)]
# Initialize time data
time_data = np.empty((0, 3)) # [[t, e, c]]
2020-03-02 20:57:31 -07:00
# Create sources for plots
2020-03-02 19:45:04 -07:00
brightness_plot_source = ColumnDataSource(data=dict(sensor=brightness_idx, brightness=brightness))
2020-03-02 20:57:31 -07:00
time_plot_source = ColumnDataSource(data=dict(t=time_data[:,0], e=time_data[:,1], c=time_data[:,2]))
2020-03-02 14:45:16 -07:00
2020-03-02 19:45:04 -07:00
# Set up plots
2020-03-02 22:09:25 -07:00
brightness_plot = figure(plot_height=150, plot_width=400, x_range=[0, 7], y_range=[0, 1], tools="save")
2020-03-02 19:45:04 -07:00
brightness_plot.line('sensor', 'brightness', source=brightness_plot_source, line_width=3)
brightness_plot.circle('sensor', 'brightness', source=brightness_plot_source, size=8, fill_color="white", line_width=2)
2020-03-02 14:45:16 -07:00
2020-03-02 22:25:48 -07:00
time_plot = figure(plot_height=400, plot_width=800, y_range=[-1, 1], tools="pan,reset,save,wheel_zoom")
2020-03-02 21:21:02 -07:00
time_plot.line('t', 'e', source=time_plot_source, line_width=3, line_alpha=0.6, legend_label="e(t)")
time_plot.line('t', 'c', source=time_plot_source, line_width=3, line_alpha=0.6, legend_label="c(t)", line_color = "green")
2020-03-02 15:24:40 -07:00
2020-03-02 21:50:07 -07:00
# Controller thread
2020-03-02 21:53:10 -07:00
control_thread_run = False
2020-03-02 15:59:59 -07:00
2020-03-02 21:53:10 -07:00
def controller():
2020-03-02 16:32:55 -07:00
global brightness
global time_data
2020-03-02 20:57:31 -07:00
global servos
2020-03-02 21:55:53 -07:00
global control_thread_run
2020-03-02 20:57:31 -07:00
2020-03-02 21:31:35 -07:00
# TODO: make these parameters editable via network interface
2020-03-02 19:45:04 -07:00
sample_interval = 0.01
2020-03-02 20:57:31 -07:00
base_speed = 0.1
2020-03-02 23:41:22 -07:00
fir_taps = [1, 0, 0]
2020-03-02 21:31:35 -07:00
iir_taps = [0, 0]
2020-03-02 23:43:40 -07:00
motor_directions = [1, -1, 0]
2020-03-02 21:41:43 -07:00
steering_sign = 1
2020-03-02 20:57:31 -07:00
print("INFO: Controller started")
2020-03-02 22:25:48 -07:00
2020-03-04 00:18:18 -07:00
# Initialize
time_data = np.zeros((max(len(fir_taps), len(iir_taps)), time_data.shape[1]))
2020-03-02 21:41:43 -07:00
# Precompute
this_time = 0
new_c = 0
motor_speed = np.array(motor_directions) * base_speed
2020-03-02 19:45:04 -07:00
2020-03-02 21:55:53 -07:00
while control_thread_run:
2020-03-02 20:57:31 -07:00
# Read error
2020-03-02 19:29:40 -07:00
brightness = np.clip([get_normalized_reflectivity(c) for c in range(8)], 0, 1)
2020-03-02 20:57:31 -07:00
line_position = np.sum((1 - brightness) * (np.arange(8) - 3.5)) / np.sum(1-brightness) / 3.5
if np.isnan(line_position):
line_position = 0
2020-03-02 19:45:04 -07:00
2020-03-02 20:57:31 -07:00
# Calculate output
2020-03-02 21:23:15 -07:00
new_c += fir_taps[0] * line_position
2020-03-02 21:41:43 -07:00
motor_speed += steering_sign * new_c
2020-03-02 20:57:31 -07:00
# Update motors
2020-03-02 23:40:24 -07:00
for ii in range(3):
servos[ii].throttle = motor_speed[ii]
2020-03-02 20:57:31 -07:00
# Log data
2020-03-02 21:17:11 -07:00
new_time_data = [[this_time, line_position, new_c]]
2020-03-02 20:00:46 -07:00
time_data = np.concatenate((time_data, new_time_data))
2020-03-02 19:45:04 -07:00
2020-03-02 20:57:31 -07:00
# Print data
2020-03-02 16:27:41 -07:00
if DEBUG:
for b in brightness:
print(f"{b:1.2f}\t", end="")
2020-03-02 19:29:40 -07:00
print(f"{line_position:+1.2f}", end="")
2020-03-02 16:27:41 -07:00
print()
2020-03-02 16:17:34 -07:00
2020-03-02 21:41:43 -07:00
# Precompute for next iteration
this_time = time_data[-1, 0] + sample_interval
c = time_data[:,2]
e = time_data[:,1]
new_c = np.sum(fir_taps[1:] * e[-len(fir_taps)+1:]) - np.sum(iir_taps * c[-len(iir_taps):])
motor_speed = np.array(motor_directions) * base_speed
# TODO: replace sleep statement with something that doesn't depend on execution time of loop
time.sleep(sample_interval)
2020-03-02 23:45:07 -07:00
for ii in range(3):
servos[ii].throttle = 0
2020-03-04 00:18:18 -07:00
print("INFO: Controller stopped")
2020-03-02 21:41:43 -07:00
2020-03-02 21:55:06 -07:00
control_thread = None
2020-03-02 21:50:07 -07:00
# Callback functions
def update_plots(attrname=None, old=None, new=None):
global brightness
global time_data
global brightness_plot_source
global control_thread_run
if control_thread_run:
brightness_plot_source.data = dict(sensor=brightness_idx, brightness=brightness)
time_plot_source.data = dict(t=time_data[:,0], e=time_data[:,1], c=time_data[:,2])
else:
brightness = np.clip([get_normalized_reflectivity(c) for c in range(8)], 0, 1)
brightness_plot_source.data = dict(sensor=brightness_idx, brightness=brightness)
2020-03-02 21:50:07 -07:00
def cal_white(attrname=None, old=None, new=None):
global white_cal
2020-03-04 00:18:18 -07:00
white_cal = [get_mux_adc(c) for c in range(8)]
2020-03-02 22:18:32 -07:00
np.savetxt('cal_white.txt', white_cal)
2020-03-02 21:50:07 -07:00
update_plots()
def cal_black(attrname=None, old=None, new=None):
global black_cal
2020-03-04 00:18:18 -07:00
black_cal = [get_mux_adc(c) for c in range(8)]
2020-03-02 22:18:32 -07:00
np.savetxt('cal_black.txt', black_cal)
2020-03-02 21:50:07 -07:00
update_plots()
def start_controller(attrname=None, old=None, new=None):
2020-03-02 21:51:03 -07:00
global control_thread
2020-03-02 21:53:10 -07:00
global control_thread_run
2020-03-02 21:51:03 -07:00
control_thread_run = True
2020-03-02 21:55:06 -07:00
control_thread = threading.Thread(target=controller)
2020-03-02 21:59:54 -07:00
control_thread.daemon = True
2020-03-02 21:51:03 -07:00
control_thread.start()
2020-03-02 21:50:07 -07:00
def stop_controller(attrname=None, old=None, new=None):
2020-03-02 21:51:03 -07:00
global control_thread
2020-03-02 21:53:10 -07:00
global control_thread_run
2020-03-02 21:55:06 -07:00
try:
control_thread_run = False
control_thread.join()
control_thread = None
except:
pass
2020-03-02 21:50:07 -07:00
2020-04-08 13:45:34 -06:00
def update_models(attrname=None, old=None, new=None):
2020-04-08 13:55:07 -06:00
stop_controller()
2020-04-08 13:59:44 -06:00
try:
2020-04-08 14:23:01 -06:00
exec("global D\n" + controller_model_text.value)
2020-04-08 13:59:44 -06:00
print("INFO: controller model updated")
print(D)
except:
print("WARN: invalid controller model")
2020-04-08 13:45:34 -06:00
2020-03-04 00:18:18 -07:00
2020-03-02 21:50:07 -07:00
# GUI elements
2020-03-04 00:18:18 -07:00
vbat_text = Paragraph(text="Battery Voltage: ? V")
2020-03-02 21:50:07 -07:00
cal_white_button = Button(label="Cal White")
cal_white_button.on_click(cal_white)
cal_black_button = Button(label="Cal Black")
cal_black_button.on_click(cal_black)
start_button = Button(label="Start")
start_button.on_click(start_controller)
stop_button = Button(label="Stop")
stop_button.on_click(stop_controller)
2020-04-08 13:45:34 -06:00
# plant_model_text =
2020-04-08 13:53:29 -06:00
controller_model_text = TextInput(value="D = TransferFunction([1], [1], dt=0.01)")
update_models_button = Button(label="Update models")
update_models_button.on_click(update_models)
2020-04-08 13:45:34 -06:00
2020-03-04 00:18:18 -07:00
def update_battery_voltage(attrname=None, old=None, new=None):
global VBAT_THRESHOLD
global vbat_text
vadc = get_mux_adc(BAT_MUX_CHAN)
2020-03-04 00:27:46 -07:00
# vbat = vadc * (10+1)/1
vbat = vadc * 12.21/1.022
2020-03-04 00:18:18 -07:00
vbat_text.text = f"Battery Voltage: {vbat:2.1f}V"
if vbat < VBAT_THRESHOLD:
stop_controller()
print("ERROR: Battery Critically Low")
# os.system("sudo poweroff")
# sample_interval = 0.01
# base_speed = 0.1
# fir_taps = [1, 0, 0]
# iir_taps = [0, 0]
# controller_sample_interval = TextInput(title="Sample Interval", value=str(sample_interval))
# controller_base_speed = Slider(title="Base Speed", value=base_speed, start=0, end=0.8, step=0.01)
# controller_fir_taps = TextInput(title="FIR taps", value=str(fir_taps))
# controller_iir_taps = TextInput(title="IIR taps", value=str(iir_taps))
controls = column(vbat_text, cal_white_button, cal_black_button, start_button, stop_button)
2020-04-08 13:53:29 -06:00
controller_model = row(controller_model_text, update_models_button)
2020-03-04 00:18:18 -07:00
# controller_settings = column(controller_sample_interval, controller_base_speed, controller_fir_taps, controller_iir_taps)
2020-04-08 13:45:34 -06:00
curdoc().add_root(column(row(controls, brightness_plot, width=800), time_plot, controller_model))#, controller_settings))
2020-03-02 21:50:07 -07:00
curdoc().title = "TriangleBot Control Panel"
curdoc().add_periodic_callback(update_plots, 250)
2020-03-04 00:18:18 -07:00
curdoc().add_periodic_callback(update_battery_voltage, 1000)