ECEN5458/Software/python/hwtest.py

168 lines
5.3 KiB
Python
Raw Normal View History

2020-02-26 10:47:21 -07:00
import time
import numpy as np
2020-03-02 11:39:07 -07:00
import board
2020-03-02 13:40:42 -07:00
import busio
2020-03-02 11:39:07 -07:00
import digitalio
2020-02-26 10:47:21 -07:00
from adafruit_servokit import ServoKit
2020-03-02 13:39:37 -07:00
import adafruit_ads1x15.ads1015 as ADS
2020-03-02 11:39:07 -07:00
from adafruit_ads1x15.analog_in import AnalogIn
import threading
2020-02-26 10:47:21 -07:00
2020-03-02 14:45:16 -07:00
from bokeh.io import curdoc
from bokeh.layouts import column, row
2020-03-02 15:16:55 -07:00
from bokeh.models import ColumnDataSource, Slider, TextInput, Button
2020-03-02 14:45:16 -07:00
from bokeh.plotting import figure
2020-03-02 16:27:41 -07:00
DEBUG = True
2020-03-02 20:57:31 -07:00
# Configure MUX for ADC
2020-03-02 15:59:59 -07:00
mux_io = [None] * 4
2020-03-02 18:56:42 -07:00
mux_io[0] = digitalio.DigitalInOut(board.D23)
mux_io[1] = digitalio.DigitalInOut(board.D22)
mux_io[2] = digitalio.DigitalInOut(board.D27)
mux_io[3] = digitalio.DigitalInOut(board.D17)
2020-03-02 15:59:59 -07:00
for ii, io in enumerate(mux_io):
io.switch_to_output()
2020-03-02 20:57:31 -07:00
# Configure ADC
2020-03-02 15:59:59 -07:00
i2c = busio.I2C(board.SCL, board.SDA)
adc = ADS.ADS1015(i2c)
adc_mux = AnalogIn(adc, ADS.P0)
2020-03-02 20:57:31 -07:00
adc_lock = threading.Lock()
# Configure Servo Driver
servos = ServoKit(channels=16).continuous_servo
servos[0].throttle = 0
servos[1].throttle = 0
servos[2].throttle = 0
# Initialize calibration
# TODO: save cal and load from file by default
2020-03-02 15:59:59 -07:00
white_cal = [0]*8
black_cal = [5]*8
def get_reflectivity(chan):
global mux_io
global adc_mux
2020-03-02 16:24:01 -07:00
global adc_lock
2020-03-02 20:57:31 -07:00
chan = int(chan)
2020-03-02 15:59:59 -07:00
mux = 1-np.array(list(f"{chan:04b}"), dtype=int)
2020-03-02 16:24:01 -07:00
adc_lock.acquire()
2020-03-02 13:57:55 -07:00
for ii, io in enumerate(mux_io):
2020-03-02 15:59:59 -07:00
io.value = mux[ii]
2020-03-02 16:24:01 -07:00
voltage = adc_mux.voltage
adc_lock.release()
return voltage
2020-03-02 15:22:01 -07:00
2020-03-02 15:59:59 -07:00
def get_normalized_reflectivity(chan):
global white_cal
global black_cal
return (get_reflectivity(chan) - black_cal[chan]) / (white_cal[chan] - black_cal[chan])
2020-03-02 15:22:01 -07:00
2020-03-02 21:06:44 -07:00
# Initialize brightness data
brightness_idx = np.arange(8)
brightness = [get_normalized_reflectivity(c) for c in range(8)]
# Initialize time data
time_data = np.empty((0, 3)) # [[t, e, c]]
2020-03-02 20:57:31 -07:00
# Create sources for plots
2020-03-02 19:45:04 -07:00
brightness_plot_source = ColumnDataSource(data=dict(sensor=brightness_idx, brightness=brightness))
2020-03-02 20:57:31 -07:00
time_plot_source = ColumnDataSource(data=dict(t=time_data[:,0], e=time_data[:,1], c=time_data[:,2]))
2020-03-02 14:45:16 -07:00
2020-03-02 19:45:04 -07:00
# Set up plots
2020-03-02 20:12:15 -07:00
brightness_plot = figure(plot_height=150, plot_width=400, x_range=[0, 7], y_range=[0, 1])
2020-03-02 19:45:04 -07:00
brightness_plot.line('sensor', 'brightness', source=brightness_plot_source, line_width=3)
brightness_plot.circle('sensor', 'brightness', source=brightness_plot_source, size=8, fill_color="white", line_width=2)
2020-03-02 14:45:16 -07:00
2020-03-02 20:57:31 -07:00
time_plot = figure(plot_height=400, plot_width=800, y_range=[-1, 1])
2020-03-02 21:21:02 -07:00
time_plot.line('t', 'e', source=time_plot_source, line_width=3, line_alpha=0.6, legend_label="e(t)")
time_plot.line('t', 'c', source=time_plot_source, line_width=3, line_alpha=0.6, legend_label="c(t)", line_color = "green")
2020-03-02 15:24:40 -07:00
2020-03-02 20:57:31 -07:00
# Callback functions
2020-03-02 19:45:04 -07:00
def update_plots(attrname=None, old=None, new=None):
2020-03-02 16:32:55 -07:00
global brightness
2020-03-02 20:02:01 -07:00
global time_data
2020-03-02 19:45:04 -07:00
global brightness_plot_source
brightness_plot_source.data = dict(sensor=brightness_idx, brightness=brightness)
2020-03-02 20:57:31 -07:00
time_plot_source.data = dict(t=time_data[:,0], e=time_data[:,1], c=time_data[:,2])
2020-03-02 15:59:59 -07:00
def cal_white(attrname=None, old=None, new=None):
2020-03-02 15:59:59 -07:00
global white_cal
2020-03-02 16:24:01 -07:00
white_cal = [get_reflectivity(c) for c in range(8)]
2020-03-02 19:45:04 -07:00
update_plots()
2020-03-02 15:59:59 -07:00
def cal_black(attrname=None, old=None, new=None):
2020-03-02 15:59:59 -07:00
global black_cal
2020-03-02 16:24:01 -07:00
black_cal = [get_reflectivity(c) for c in range(8)]
2020-03-02 19:45:04 -07:00
update_plots()
2020-03-02 15:59:59 -07:00
2020-03-02 20:57:31 -07:00
# GUI elements
2020-03-02 15:59:59 -07:00
cal_white_button = Button(label="Cal White")
cal_white_button.on_click(cal_white)
cal_black_button = Button(label="Cal Black")
cal_black_button.on_click(cal_black)
2020-03-02 19:03:20 -07:00
controls = column(cal_white_button, cal_black_button)
curdoc().add_root(column(row(controls, brightness_plot, width=800), time_plot))
2020-03-02 16:20:43 -07:00
curdoc().title = "TriangleBot Control Panel"
2020-03-02 19:45:04 -07:00
curdoc().add_periodic_callback(update_plots, 250)
2020-03-02 15:59:59 -07:00
2020-03-02 20:57:31 -07:00
# Controller
def control_thread():
2020-03-02 16:32:55 -07:00
global brightness
global time_data
2020-03-02 20:57:31 -07:00
global servos
2020-03-02 19:45:04 -07:00
sample_interval = 0.01
2020-03-02 20:57:31 -07:00
base_speed = 0.1
fir_taps = [1, 1, 0]
2020-03-02 21:27:59 -07:00
iir_taps = [0.99, 0]
time_data = np.zeros((max(len(fir_taps), len(iir_taps)), time_data.shape[1]))
2020-03-02 20:57:31 -07:00
while True:
2020-03-02 19:45:04 -07:00
# TODO: replace sleep statement with something that doesn't depend on execution time of loop
time.sleep(sample_interval)
2020-03-02 20:03:17 -07:00
if time_data.shape[0] == 0:
2020-03-02 19:45:04 -07:00
this_time = 0
else:
2020-03-02 20:07:07 -07:00
this_time = time_data[-1, 0] + sample_interval
2020-03-02 19:45:04 -07:00
2020-03-02 20:57:31 -07:00
# Precompute as much as possible
c = time_data[:,2]
2020-03-02 21:07:36 -07:00
e = time_data[:,1]
2020-03-02 21:26:56 -07:00
new_c = np.sum(fir_taps[1:] * e[-len(fir_taps)+1:]) - np.sum(iir_taps * c[-len(iir_taps):])
2020-03-02 21:16:01 -07:00
motor_speed = np.array([-1, 1, 0]) * base_speed
2020-03-02 20:57:31 -07:00
# Read error
2020-03-02 19:29:40 -07:00
brightness = np.clip([get_normalized_reflectivity(c) for c in range(8)], 0, 1)
2020-03-02 20:57:31 -07:00
line_position = np.sum((1 - brightness) * (np.arange(8) - 3.5)) / np.sum(1-brightness) / 3.5
if np.isnan(line_position):
line_position = 0
2020-03-02 19:45:04 -07:00
2020-03-02 20:57:31 -07:00
# Calculate output
2020-03-02 21:23:15 -07:00
new_c += fir_taps[0] * line_position
2020-03-02 21:17:11 -07:00
motor_speed += new_c
2020-03-02 20:57:31 -07:00
# Update motors
# for ii in range(3):
# servos[ii].throttle = motor_speed[ii]
2020-03-02 20:57:31 -07:00
# Log data
2020-03-02 21:17:11 -07:00
new_time_data = [[this_time, line_position, new_c]]
2020-03-02 20:00:46 -07:00
time_data = np.concatenate((time_data, new_time_data))
2020-03-02 19:45:04 -07:00
2020-03-02 20:57:31 -07:00
# Print data
2020-03-02 16:27:41 -07:00
if DEBUG:
for b in brightness:
print(f"{b:1.2f}\t", end="")
2020-03-02 19:29:40 -07:00
print(f"{line_position:+1.2f}", end="")
2020-03-02 16:27:41 -07:00
print()
2020-03-02 16:17:34 -07:00
2020-03-02 20:57:31 -07:00
# Start controller
# TODO: add start/stop/reset capability to GUI
2020-03-02 19:47:38 -07:00
control_thread = threading.Thread(target=control_thread)
control_thread.start()