ECEN5458/Software/python/hwtest.py

145 lines
4.2 KiB
Python
Raw Normal View History

2020-02-26 10:47:21 -07:00
import time
import numpy as np
2020-03-02 11:39:07 -07:00
import board
2020-03-02 13:40:42 -07:00
import busio
2020-03-02 11:39:07 -07:00
import digitalio
2020-02-26 10:47:21 -07:00
from adafruit_servokit import ServoKit
2020-03-02 13:39:37 -07:00
import adafruit_ads1x15.ads1015 as ADS
2020-03-02 11:39:07 -07:00
from adafruit_ads1x15.analog_in import AnalogIn
import threading
2020-02-26 10:47:21 -07:00
2020-03-02 14:45:16 -07:00
from bokeh.io import curdoc
from bokeh.layouts import column, row
2020-03-02 15:16:55 -07:00
from bokeh.models import ColumnDataSource, Slider, TextInput, Button
2020-03-02 14:45:16 -07:00
from bokeh.plotting import figure
2020-03-02 16:27:41 -07:00
DEBUG = True
2020-03-02 15:59:59 -07:00
mux_io = [None] * 4
2020-03-02 18:56:42 -07:00
mux_io[0] = digitalio.DigitalInOut(board.D23)
mux_io[1] = digitalio.DigitalInOut(board.D22)
mux_io[2] = digitalio.DigitalInOut(board.D27)
mux_io[3] = digitalio.DigitalInOut(board.D17)
2020-03-02 15:59:59 -07:00
for ii, io in enumerate(mux_io):
io.switch_to_output()
i2c = busio.I2C(board.SCL, board.SDA)
adc = ADS.ADS1015(i2c)
adc_mux = AnalogIn(adc, ADS.P0)
white_cal = [0]*8
black_cal = [5]*8
2020-03-02 16:24:01 -07:00
adc_lock = threading.Lock()
2020-03-02 15:59:59 -07:00
def get_reflectivity(chan):
chan = int(chan)
global mux_io
global adc_mux
2020-03-02 16:24:01 -07:00
global adc_lock
2020-03-02 15:59:59 -07:00
mux = 1-np.array(list(f"{chan:04b}"), dtype=int)
2020-03-02 16:24:01 -07:00
adc_lock.acquire()
2020-03-02 13:57:55 -07:00
for ii, io in enumerate(mux_io):
2020-03-02 15:59:59 -07:00
io.value = mux[ii]
2020-03-02 16:30:00 -07:00
time.sleep(0.001)
2020-03-02 16:24:01 -07:00
voltage = adc_mux.voltage
adc_lock.release()
return voltage
2020-03-02 15:22:01 -07:00
2020-03-02 15:59:59 -07:00
def get_normalized_reflectivity(chan):
global white_cal
global black_cal
return (get_reflectivity(chan) - black_cal[chan]) / (white_cal[chan] - black_cal[chan])
2020-03-02 15:22:01 -07:00
2020-03-02 15:59:59 -07:00
brightness_idx = np.arange(8)
brightness = [get_normalized_reflectivity(c) for c in range(8)]
2020-03-02 19:45:04 -07:00
t = np.array([])
error = np.array([])
2020-03-02 14:45:16 -07:00
2020-03-02 19:45:04 -07:00
brightness_plot_source = ColumnDataSource(data=dict(sensor=brightness_idx, brightness=brightness))
time_plot_source = ColumnDataSource(data=dict(t=t, e=error))
2020-03-02 14:45:16 -07:00
2020-03-02 19:45:04 -07:00
# Set up plots
brightness_plot = figure(plot_height=150, plot_width=400, title="Reflectivity", x_range=[0, 7], y_range=[0, 1])
brightness_plot.line('sensor', 'brightness', source=brightness_plot_source, line_width=3)
brightness_plot.circle('sensor', 'brightness', source=brightness_plot_source, size=8, fill_color="white", line_width=2)
2020-03-02 14:45:16 -07:00
2020-03-02 19:45:04 -07:00
time_plot = figure(plot_height=400, plot_width=400, title="Signals")
time_plot.line('t', 'e', source=time_plot_source, line_width=3, line_alpha=0.6)
2020-03-02 15:24:40 -07:00
2020-03-02 19:45:04 -07:00
def update_plots(attrname=None, old=None, new=None):
2020-03-02 16:32:55 -07:00
global brightness
2020-03-02 19:45:04 -07:00
global error
global brightness_plot_source
brightness_plot_source.data = dict(sensor=brightness_idx, brightness=brightness)
time_plot_source.data = dict(t=t, e=error)
2020-03-02 15:59:59 -07:00
def cal_white(attrname=None, old=None, new=None):
2020-03-02 15:59:59 -07:00
global white_cal
2020-03-02 16:24:01 -07:00
white_cal = [get_reflectivity(c) for c in range(8)]
2020-03-02 19:45:04 -07:00
update_plots()
2020-03-02 15:59:59 -07:00
def cal_black(attrname=None, old=None, new=None):
2020-03-02 15:59:59 -07:00
global black_cal
2020-03-02 16:24:01 -07:00
black_cal = [get_reflectivity(c) for c in range(8)]
2020-03-02 19:45:04 -07:00
update_plots()
2020-03-02 15:59:59 -07:00
cal_white_button = Button(label="Cal White")
cal_white_button.on_click(cal_white)
cal_black_button = Button(label="Cal Black")
cal_black_button.on_click(cal_black)
2020-03-02 19:03:20 -07:00
controls = column(cal_white_button, cal_black_button)
2020-03-02 15:59:59 -07:00
2020-03-02 19:45:52 -07:00
curdoc().add_root(row(controls, brightness_plot, time_plot, width=800))
2020-03-02 16:20:43 -07:00
curdoc().title = "TriangleBot Control Panel"
2020-03-02 19:45:04 -07:00
curdoc().add_periodic_callback(update_plots, 250)
2020-03-02 15:59:59 -07:00
def control_thread():
2020-03-02 16:32:55 -07:00
global brightness
2020-03-02 19:45:04 -07:00
global t
global error
sample_interval = 0.01
while True:
2020-03-02 19:45:04 -07:00
# TODO: replace sleep statement with something that doesn't depend on execution time of loop
time.sleep(sample_interval)
if len(time) == 0:
this_time = 0
else:
this_time = t[-1] + sample_interval
2020-03-02 19:29:40 -07:00
brightness = np.clip([get_normalized_reflectivity(c) for c in range(8)], 0, 1)
line_position = np.sum((1 - brightness) * (np.arange(8) - 3.5))/np.sum(1-brightness)
2020-03-02 19:45:04 -07:00
# TODO: implement control stuff and drive outputs
t = np.concatenate((t, this_time))
error = np.concatenate((error, line_position))
2020-03-02 16:27:41 -07:00
if DEBUG:
for b in brightness:
print(f"{b:1.2f}\t", end="")
2020-03-02 19:29:40 -07:00
print(f"{line_position:+1.2f}", end="")
2020-03-02 16:27:41 -07:00
print()
2020-03-02 16:17:34 -07:00
t = threading.Thread(target=control_thread)
t.start()
2020-03-02 15:59:59 -07:00
# servos = ServoKit(channels=16).continuous_servo
# servos[0].throttle = 0
# servos[1].throttle = 0
# servos[2].throttle = 0
# time.sleep(1)
# servos[0].throttle = 20
# servos[1].throttle = 20
# servos[2].throttle = 20
# time.sleep(1)
# servos[0].throttle = 0
# servos[1].throttle = 0
# servos[2].throttle = 0
2020-03-02 15:24:40 -07:00