misc local modifications
This commit is contained in:
264
spice/test/AD8038.sub
Executable file
264
spice/test/AD8038.sub
Executable file
@@ -0,0 +1,264 @@
|
||||
*AD8038 Macro-model
|
||||
*Function:Amplifier
|
||||
*
|
||||
*Revision History:
|
||||
*Rev.2.1 Jun 2015-ZZ
|
||||
*Copyright 2015 by Analog Devices
|
||||
*
|
||||
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
|
||||
*for License Statement. Use of this model indicates your acceptance
|
||||
*of the terms and provisions in the License Staement.
|
||||
*
|
||||
*Tested on MultSIm, SiMetrix(NGSpice), PSpice
|
||||
*
|
||||
*Not modeled: Distortion, PSRR, Overload Recovery,
|
||||
* Shutdown Turn On/Turn Off time
|
||||
*
|
||||
*Parameters modeled include:
|
||||
* Vos, Ibias, Input CM limits and Typ output voltge swing over full supply range,
|
||||
* Open Loop Gain & Phase, Slew Rate, Output current limits, Voltage & Current Noise over temp,
|
||||
* Capacitive load drive, Quiescent and dynamic supply currents,
|
||||
* Shut Down pin functionality where applicable,
|
||||
* Single supply & offset supply functionality.
|
||||
*
|
||||
*Node Assignments
|
||||
* Non-Inverting Input
|
||||
* | Inverting Input
|
||||
* | | Positive supply
|
||||
* | | | Negative supply
|
||||
* | | | | Output
|
||||
* | | | | | PD
|
||||
* | | | | | |
|
||||
.Subckt AD8038 100 101 102 103 104 106
|
||||
*
|
||||
***Power Supplies***
|
||||
Rz1 102 1020 Rideal 1e-6
|
||||
Rz2 103 1030 Rideal 1e-6
|
||||
Ibias 1020 1030 dc 0.2e-3
|
||||
DzPS 98 1020 diode
|
||||
Iquies 1020 98 dc 0.8e-3
|
||||
S1 98 1030 106 113 Switch
|
||||
R1 1020 99 Rideal 1e7
|
||||
R2 99 1030 Rideal 1e7
|
||||
e1 111 110 1020 110 1
|
||||
e2 110 112 110 1030 1
|
||||
e3 110 0 99 0 1
|
||||
*
|
||||
*
|
||||
***Inputs***
|
||||
S2 1 100 106 113 Switch
|
||||
S3 9 101 106 113 Switch
|
||||
VOS 1 2 dc 500e-6
|
||||
IbiasP 110 2 dc 0.4e-6
|
||||
IbiasN 110 9 dc 0.4e-6
|
||||
RinCMP 110 2 Rideal 20e6
|
||||
RinCMN 9 110 Rideal 20e6
|
||||
CinCMP 110 2 1e-12
|
||||
CinCMN 9 110 1e-12
|
||||
IOS 9 2 0.025e-6
|
||||
RinDiff 9 2 Rideal 2e3
|
||||
CinDiff 9 2 0.1e-12
|
||||
*
|
||||
*
|
||||
***Non-Inverting Input with Clamp***
|
||||
g1 3 110 110 2 0.001
|
||||
RInP 3 110 Rideal 1e3
|
||||
RX1 40 3 Rideal 0.001
|
||||
DInP 40 41 diode
|
||||
DInN 42 40 diode
|
||||
VinP 111 41 dc 1.46
|
||||
VinN 42 112 dc 1.46
|
||||
*
|
||||
*
|
||||
***Vnoise***
|
||||
hVn 6 5 Vmeas1 707.10678
|
||||
Vmeas1 20 110 DC 0
|
||||
Vvn 21 110 dc 0.65
|
||||
Dvn 21 20 DVnoisy
|
||||
hVn1 6 7 Vmeas2 707.10678
|
||||
Vmeas2 22 110 dc 0
|
||||
Vvn1 23 110 dc 0.65
|
||||
Dvn1 23 22 DVnoisy
|
||||
*
|
||||
*
|
||||
***Inoise***
|
||||
FnIN 9 110 Vmeas3 0.7071068
|
||||
Vmeas3 51 110 dc 0
|
||||
VnIN 50 110 dc 0.65
|
||||
DnIN 50 51 DINnoisy
|
||||
FnIN1 110 9 Vmeas4 0.7071068
|
||||
Vmeas4 53 110 dc 0
|
||||
VnIN1 52 110 dc 0.65
|
||||
DnIN1 52 53 DINnoisy
|
||||
*
|
||||
FnIP 2 110 Vmeas5 0.7071068
|
||||
Vmeas5 31 110 dc 0
|
||||
VnIP 30 110 dc 0.65
|
||||
DnIP 30 31 DIPnoisy
|
||||
FnIP1 110 2 Vmeas6 0.7071068
|
||||
Vmeas6 33 110 dc 0
|
||||
VnIP1 32 110 dc 0.65
|
||||
DnIP1 32 33 DIPnoisy
|
||||
*
|
||||
*
|
||||
***CMRR***
|
||||
RcmrrP 3 10 Rideal 1e12
|
||||
RcmrrN 10 9 Rideal 1e12
|
||||
g10 11 110 10 110 -1e-10
|
||||
Lcmrr 11 12 1e-12
|
||||
Rcmrr 12 110 Rideal 1e3
|
||||
e4 5 3 11 110 1
|
||||
*
|
||||
*
|
||||
***Power Down***
|
||||
VPD 111 80 dc 4.5
|
||||
VPD1 81 0 dc 2
|
||||
RPD 111 106 Rideal 1e6
|
||||
ePD 80 113 82 0 1
|
||||
RDP1 82 0 Rideal 1e3
|
||||
CPD 82 0 1e-10
|
||||
S5 81 82 83 113 Switch
|
||||
CDP1 83 0 1e-12
|
||||
RPD2 106 83 1e6
|
||||
*
|
||||
*
|
||||
***Feedback Pin***
|
||||
*RF 105 104 Rideal 0.001
|
||||
*
|
||||
*
|
||||
***VFB Stage***
|
||||
g200 200 110 7 9 1
|
||||
R200 200 110 Rideal 250
|
||||
DzSlewP 201 200 DzSlewP
|
||||
DzSlewN 201 110 DzSlewN
|
||||
*
|
||||
*
|
||||
***Dominant Pole at 48 Hz***
|
||||
g210 210 110 200 110 3.8149e-6
|
||||
R210 210 110 Rideal 3.32e6
|
||||
C210 210 110 1e-012
|
||||
*
|
||||
*
|
||||
***Output Voltage Clamp-1***
|
||||
RX2 60 210 Rideal 0.001
|
||||
DzVoutP 61 60 DzVoutP
|
||||
DzVoutN 60 62 DzVoutN
|
||||
DVoutP 61 63 diode
|
||||
DVoutN 64 62 diode
|
||||
VoutP 65 63 dc 5.839
|
||||
VoutN 64 66 dc 5.839
|
||||
e60 65 110 111 110 1.05
|
||||
e61 66 110 112 110 1.05
|
||||
*
|
||||
*
|
||||
***Pole at 800MHz***
|
||||
g220 220 110 210 110 0.001
|
||||
R220 220 110 Rideal 1000
|
||||
C220 220 110 0.1989e-12
|
||||
*
|
||||
***Pole at 900MHz***
|
||||
g230 230 110 220 110 0.001
|
||||
R230 230 110 Rideal 1000
|
||||
C230 230 110 0.1768e-12
|
||||
*
|
||||
***Pole at 1200MHz***
|
||||
g240 240 110 230 110 0.001
|
||||
R240 240 110 Rideal 1000
|
||||
C240 240 110 0.1326e-12
|
||||
*
|
||||
***Zero at 1800MHz***
|
||||
g245 245 110 240 110 0.001
|
||||
R245 245 246 Rideal 1000
|
||||
L245 246 110 0.0884e-6
|
||||
*
|
||||
***Buffer***
|
||||
g250 250 110 245 110 0.001
|
||||
R250 250 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
g255 255 110 250 110 0.001
|
||||
R255 255 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
g260 260 110 255 110 0.001
|
||||
R260 260 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
g265 265 110 260 110 0.001
|
||||
R265 265 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
g270 270 110 265 110 0.001
|
||||
R270 270 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
e280 280 110 270 110 1
|
||||
R280 280 285 Rideal 10
|
||||
*
|
||||
***Peak: f=160MHz, Zeta=0.7, Gain=1.2dB***
|
||||
e290 290 110 285 110 1
|
||||
R290 290 292 Rideal 10
|
||||
L290 290 291 7.105e-9
|
||||
C290 291 292 139.26e-12
|
||||
R291 292 110 Rideal 67.498
|
||||
e295 295 110 292 110 1.1482
|
||||
*
|
||||
*
|
||||
***Output Stage***
|
||||
g300 300 110 295 110 0.001
|
||||
R300 300 110 Rideal 1000
|
||||
e301 301 110 300 110 1
|
||||
Rout 302 303 Rideal 33
|
||||
Lout 303 310 4.6e-9
|
||||
Cout 310 110 1e-12
|
||||
*
|
||||
*
|
||||
***Output Current Limit***
|
||||
H1 301 304 Vsense1 100
|
||||
Vsense1 301 302 dc 0
|
||||
VIoutP 305 304 dc 15.336
|
||||
VIoutN 304 306 dc 19.336
|
||||
DIoutP 307 305 diode
|
||||
DIoutN 306 307 diode
|
||||
Rx3 307 300 Rideal 0.001
|
||||
*
|
||||
*
|
||||
***Output Clamp-2***
|
||||
VoutP1 111 73 dc 1.685
|
||||
VoutN1 74 112 dc 1.685
|
||||
DVoutP1 75 73 diode
|
||||
DVoutN1 74 75 diode
|
||||
RX4 75 310 Rideal 0.001
|
||||
*
|
||||
*
|
||||
***Supply Currents***
|
||||
FIoVcc 314 110 Vmeas8 1
|
||||
Vmeas8 310 311 dc 0
|
||||
R314 110 314 Rideal 1e9
|
||||
DzOVcc 110 314 diode
|
||||
DOVcc 102 314 diode
|
||||
RX5 311 312 Rideal 0.001
|
||||
FIoVee 315 110 Vmeas9 1
|
||||
Vmeas9 312 313 dc 0
|
||||
R315 315 110 Rideal 1e9
|
||||
DzOVee 315 110 diode
|
||||
DOVee 315 103 diode
|
||||
*
|
||||
*
|
||||
***Output Switch***
|
||||
S4 104 313 106 113 Switch
|
||||
*
|
||||
*
|
||||
*** Common Models ***
|
||||
.model diode d(bv=100)
|
||||
.model Switch vswitch(Von=2.005,Voff=1.995,ron=0.001,roff=1e6)
|
||||
.model DzVoutP D(BV=4.3)
|
||||
.model DzVoutN D(BV=4.3)
|
||||
.model DzSlewP D(BV=111.881)
|
||||
.model DzSlewN D(BV=111.881)
|
||||
.model DVnoisy D(IS=2.29e-15 KF=2.13e-15)
|
||||
.model DINnoisy D(IS=1.03e-17 KF=1.07e-14)
|
||||
.model DIPnoisy D(IS=1.03e-17 KF=1.07e-14)
|
||||
.model Rideal res(T_ABS=-273)
|
||||
*
|
||||
.ends
|
265
spice/test/ADA4891.sub
Executable file
265
spice/test/ADA4891.sub
Executable file
@@ -0,0 +1,265 @@
|
||||
*ADA4891 Macro-model
|
||||
*Function:Amplifier
|
||||
*
|
||||
*Revision History:
|
||||
*Rev.2.1 Oct 2016-JL
|
||||
*Copyright 2016 by Analog Devices
|
||||
*
|
||||
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
|
||||
*for License Statement. Use of this model indicates your acceptance
|
||||
*of the terms and provisions in the License Staement.
|
||||
*
|
||||
*Tested on MultSIm, SiMetrix(NGSpice), PSpice
|
||||
*
|
||||
*Not modeled: Distortion, PSRR, Overload Recovery,
|
||||
* Shutdown Turn On/Turn Off time
|
||||
*
|
||||
*Parameters modeled include:
|
||||
* Vos, Ibias, Input CM limits and Typ output voltge swing over full supply range,
|
||||
* Open Loop Gain & Phase, Slew Rate, Output current limits, Voltage & Current Noise over temp,
|
||||
* Capacitive load drive, Quiescent and dynamic supply currents.
|
||||
*
|
||||
*
|
||||
*
|
||||
*Node Assignments
|
||||
* Non-Inverting Input
|
||||
* | Inverting Input
|
||||
* | | Positive supply
|
||||
* | | | Negative supply
|
||||
* | | | | Output
|
||||
* | | | | |
|
||||
* | | | | |
|
||||
.Subckt ADA4891 100 101 102 103 104
|
||||
*
|
||||
***Power Supplies***
|
||||
Rz1 102 1020 Rideal 1e-6
|
||||
Rz2 103 1030 Rideal 1e-6
|
||||
Ibias 1020 1030 dc 0.01e-3
|
||||
DzPS 98 1020 diode
|
||||
Iquies 1020 98 dc 4.39e-3
|
||||
S1 98 1030 106 113 Switch
|
||||
R1 1020 99 Rideal 1e7
|
||||
R2 99 1030 Rideal 1e7
|
||||
e1 111 110 1020 110 1
|
||||
e2 110 112 110 1030 1
|
||||
e3 110 0 99 0 1
|
||||
*
|
||||
*
|
||||
***Inputs***
|
||||
S2 1 100 106 113 Switch
|
||||
S3 9 101 106 113 Switch
|
||||
VOS 1 2 dc 2.5e-3
|
||||
IbiasP 110 2 dc 2e-12
|
||||
IbiasN 110 9 dc 2e-12
|
||||
RinCMP 110 2 Rideal 5000e6
|
||||
RinCMN 9 110 Rideal 5000e6
|
||||
CinCMP 110 2 2.2e-12
|
||||
CinCMN 9 110 2.2e-12
|
||||
IOS 9 2 1e-15
|
||||
RinDiff 9 2 Rideal 10000e3
|
||||
CinDiff 9 2 0.8e-12
|
||||
*
|
||||
*
|
||||
***Non-Inverting Input with Clamp***
|
||||
g1 3 110 110 2 0.001
|
||||
RInP 3 110 Rideal 1e3
|
||||
RX1 40 3 Rideal 0.001
|
||||
DInP 40 41 diode
|
||||
DInN 42 40 diode
|
||||
VinP 111 41 dc 1.26
|
||||
VinN 42 112 dc 0.16
|
||||
*
|
||||
*
|
||||
***Vnoise***
|
||||
hVn 6 5 Vmeas1 707.10678
|
||||
Vmeas1 20 110 DC 0
|
||||
Vvn 21 110 dc 0.65
|
||||
Dvn 21 20 DVnoisy
|
||||
hVn1 6 7 Vmeas2 707.10678
|
||||
Vmeas2 22 110 dc 0
|
||||
Vvn1 23 110 dc 0.65
|
||||
Dvn1 23 22 DVnoisy
|
||||
*
|
||||
*
|
||||
***Inoise***
|
||||
FnIN 9 110 Vmeas3 0.7071068
|
||||
Vmeas3 51 110 dc 0
|
||||
VnIN 50 110 dc 0.65
|
||||
DnIN 50 51 DINnoisy
|
||||
FnIN1 110 9 Vmeas4 0.7071068
|
||||
Vmeas4 53 110 dc 0
|
||||
VnIN1 52 110 dc 0.65
|
||||
DnIN1 52 53 DINnoisy
|
||||
*
|
||||
FnIP 2 110 Vmeas5 0.7071068
|
||||
Vmeas5 31 110 dc 0
|
||||
VnIP 30 110 dc 0.65
|
||||
DnIP 30 31 DIPnoisy
|
||||
FnIP1 110 2 Vmeas6 0.7071068
|
||||
Vmeas6 33 110 dc 0
|
||||
VnIP1 32 110 dc 0.65
|
||||
DnIP1 32 33 DIPnoisy
|
||||
*
|
||||
*
|
||||
***CMRR***
|
||||
RcmrrP 3 10 Rideal 1e12
|
||||
RcmrrN 10 9 Rideal 1e12
|
||||
g10 11 110 10 110 -8.437e-9
|
||||
Lcmrr 11 12 8e-3
|
||||
Rcmrr 12 110 Rideal 1e3
|
||||
e4 5 3 11 110 1
|
||||
*
|
||||
*
|
||||
***Power Down***
|
||||
VPD 111 80 dc 2
|
||||
VPD1 81 0 dc 1.5
|
||||
RPD 111 106 Rideal 1e6
|
||||
ePD 80 113 82 0 1
|
||||
RDP1 82 0 Rideal 1e3
|
||||
CPD 82 0 1e-10
|
||||
S5 81 82 83 113 Switch
|
||||
CDP1 83 0 1e-12
|
||||
RPD2 106 83 1e6
|
||||
*
|
||||
*
|
||||
***Feedback Pin***
|
||||
*RF 105 104 Rideal 0.001
|
||||
*
|
||||
*
|
||||
***VFB Stage***
|
||||
g200 200 110 7 9 1
|
||||
R200 200 110 Rideal 250
|
||||
DzSlewP 201 200 DzSlewP
|
||||
DzSlewN 201 110 DzSlewN
|
||||
*
|
||||
*
|
||||
***Dominant Pole at 8.88 Hz***
|
||||
g210 210 110 200 110 3.378e-6
|
||||
R210 210 110 Rideal 17.92e6
|
||||
C210 210 110 1e-012
|
||||
*
|
||||
*
|
||||
***Output Voltage Clamp-1***
|
||||
RX2 60 210 Rideal 0.001
|
||||
DzVoutP 61 60 DzVoutP
|
||||
DzVoutN 60 62 DzVoutN
|
||||
DVoutP 61 63 diode
|
||||
DVoutN 64 62 diode
|
||||
VoutP 65 63 dc 5.121
|
||||
VoutN 64 66 dc 5.095
|
||||
e60 65 110 111 110 1.27
|
||||
e61 66 110 112 110 1.27
|
||||
*
|
||||
*
|
||||
***Pole at 500MHz***
|
||||
g220 220 110 210 110 0.001
|
||||
R220 220 110 Rideal 1000
|
||||
C220 220 110 0.3183e-12
|
||||
*
|
||||
***Pole at 800MHz***
|
||||
g230 230 110 220 110 0.001
|
||||
R230 230 110 Rideal 1000
|
||||
C230 230 110 0.1989e-12
|
||||
*
|
||||
***Pole at 1200MHz***
|
||||
g240 240 110 230 110 0.001
|
||||
R240 240 110 Rideal 1000
|
||||
C240 240 110 0.1326e-12
|
||||
*
|
||||
***Pole at 1500MHz***
|
||||
g245 245 110 240 110 0.001
|
||||
R245 245 110 Rideal 1000
|
||||
C245 245 110 0.1061e-12
|
||||
*
|
||||
***Pole at 1700MHz***
|
||||
g250 250 110 245 110 0.001
|
||||
R250 250 110 Rideal 1000
|
||||
C250 250 110 0.0936e-12
|
||||
*
|
||||
***Buffer***
|
||||
g255 255 110 250 110 0.001
|
||||
R255 255 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
g260 260 110 255 110 0.001
|
||||
R260 260 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
g265 265 110 260 110 0.001
|
||||
R265 265 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
g270 270 110 265 110 0.001
|
||||
R270 270 110 Rideal 1000
|
||||
*
|
||||
***Buffer***
|
||||
e280 280 110 270 110 1
|
||||
R280 280 285 Rideal 10
|
||||
*
|
||||
***Peak: f=210MHz, Zeta=0.7, Gain=0.2dB***
|
||||
e290 290 110 285 110 1
|
||||
R290 290 292 Rideal 10
|
||||
L290 290 291 5.413e-9
|
||||
C290 291 292 106.103e-12
|
||||
R291 292 110 Rideal 429.314
|
||||
e295 295 110 292 110 1.0233
|
||||
*
|
||||
*
|
||||
***Output Stage***
|
||||
g300 300 110 295 110 0.001
|
||||
R300 300 110 Rideal 1000
|
||||
e301 301 110 300 110 1
|
||||
Rout 302 303 Rideal 36
|
||||
Lout 303 310 7e-9
|
||||
Cout 310 110 1.3e-12
|
||||
*
|
||||
*
|
||||
***Output Current Limit***
|
||||
H1 301 304 Vsense1 100
|
||||
Vsense1 301 302 dc 0
|
||||
VIoutP 305 304 dc 19.836
|
||||
VIoutN 304 306 dc 30.036
|
||||
DIoutP 307 305 diode
|
||||
DIoutN 306 307 diode
|
||||
Rx3 307 300 Rideal 0.001
|
||||
*
|
||||
*
|
||||
***Output Clamp-2***
|
||||
VoutP1 111 73 dc 0.705
|
||||
VoutN1 74 112 dc 0.695
|
||||
DVoutP1 75 73 diode
|
||||
DVoutN1 74 75 diode
|
||||
RX4 75 310 Rideal 0.001
|
||||
*
|
||||
*
|
||||
***Supply Currents***
|
||||
FIoVcc 314 110 Vmeas8 1
|
||||
Vmeas8 310 311 dc 0
|
||||
R314 110 314 Rideal 1e9
|
||||
DzOVcc 110 314 diode
|
||||
DOVcc 102 314 diode
|
||||
RX5 311 312 Rideal 0.001
|
||||
FIoVee 315 110 Vmeas9 1
|
||||
Vmeas9 312 313 dc 0
|
||||
R315 315 110 Rideal 1e9
|
||||
DzOVee 315 110 diode
|
||||
DOVee 315 103 diode
|
||||
*
|
||||
*
|
||||
***Output Switch***
|
||||
S4 104 313 106 113 Switch
|
||||
*
|
||||
*
|
||||
*** Common Models ***
|
||||
.model diode d(bv=100)
|
||||
.model Switch vswitch(Von=1.505,Voff=1.495,ron=0.001,roff=1e6)
|
||||
.model DzVoutP D(BV=4.3)
|
||||
.model DzVoutN D(BV=4.3)
|
||||
.model DzSlewP D(BV=50.802)
|
||||
.model DzSlewN D(BV=62.643)
|
||||
.model DVnoisy D(IS=2.99e-15 KF=1.02e-14)
|
||||
.model DINnoisy D(IS=3.81e-19 KF=0.00e0)
|
||||
.model DIPnoisy D(IS=3.81e-19 KF=0.00e0)
|
||||
.model Rideal res(T_ABS=-273)
|
||||
*
|
||||
.ends ADA4891
|
449
spice/test/LMH5401.lib
Executable file
449
spice/test/LMH5401.lib
Executable file
@@ -0,0 +1,449 @@
|
||||
* LMH5401
|
||||
*****************************************************************************
|
||||
* (C) Copyright 2012 Texas Instruments Incorporated. All rights reserved.
|
||||
*****************************************************************************
|
||||
** This model is designed as an aid for customers of Texas Instruments.
|
||||
** TI and its licensors and suppliers make no warranties, either expressed
|
||||
** or implied, with respect to this model, including the warranties of
|
||||
** merchantability or fitness for a particular purpose. The model is
|
||||
** provided solely on an "as is" basis. The entire risk as to its quality
|
||||
** and performance is with the customer.
|
||||
*****************************************************************************
|
||||
*
|
||||
** Released by: WEBENCH(R) Design Center, Texas Instruments Inc.
|
||||
* Part: LMH5401
|
||||
* Date: 10/20/2013
|
||||
* Model Type: All In One
|
||||
* Simulator: TINA9
|
||||
* Simulator Version: 9.3.50.40
|
||||
* EVM Order Number: N/A
|
||||
* EVM Users Guide: N/A
|
||||
* Datasheet: SBOS710 - October 2014
|
||||
*
|
||||
* Model Version: 1.2
|
||||
*
|
||||
*****************************************************************************
|
||||
*
|
||||
* Updates:
|
||||
*
|
||||
* Version 1.0 : Release to Web
|
||||
* Version 1.1 : Add internal input resistance
|
||||
* Version 1.2 : Rev CM output connections. Add current noise
|
||||
*
|
||||
*****************************************************************************
|
||||
* Notes:
|
||||
* The model meets the following specs for 5V operation, G = 4V/V:
|
||||
* 1. Turn-on and turn-off time delay
|
||||
* 2. Slew Rate
|
||||
* 3. CMRR vs frequency
|
||||
* 4. Input and output common-mode range
|
||||
* 5. Input voltage noise
|
||||
* 6. Output voltage swing and output current
|
||||
* 7. Quiescent current for active and power-down modes
|
||||
* 8. Output common-mode bandwidth, gain and offset
|
||||
* 9. HD2, HD3 vs frequency
|
||||
* 10 HD2, HD3 vs. VICM and VOCM
|
||||
* Note:
|
||||
* The model HD2 & HD3 are 4dB-8dB better than the actual device for f < 50MHz
|
||||
* The model may not conform to published specs for 3.3V operation
|
||||
*****************************************************************************
|
||||
*
|
||||
*$
|
||||
.SUBCKT LMH5401 OUTP OUTN FBP FBN INP INN CM PD VCC VEE GND
|
||||
X_U17 U3_OUTP U3_OUTN LIMITER_INP LIMITER_INN VMID VCC VEE IOUTP IOUTN
|
||||
+ LIMITER
|
||||
G_G2 VMID VEE IOUTN VMID 1
|
||||
R_R20 OUTPINT OUTP 10
|
||||
E_E8 OUT 0 OUTPINT OUTNINT 1
|
||||
X_U30 GBW_INP LIM_INP VCC VEE VMID IN_LIM
|
||||
G_G10 DIST_OUTN DIST_OUTP N1047668 N1047660 0.13
|
||||
X_S2 SHDN VMID N17901 N15575 DEV_SCH_S2
|
||||
E_E6 N15575 CM_OUT U2_OUTP U2_OUTN 1
|
||||
G_G11 DIST_OUTN DIST_OUTP N1056358 N1055868 0.1
|
||||
X_U16 U2_OUTP U2_OUTN LIMITER_INP LIMITER_INN VMID VCC VEE IOUTP IOUTN
|
||||
+ LIMITER
|
||||
X_U25 CM_OUT VMID N65800 CMCALC SHDN VMID CM_CL_GAIN
|
||||
X_H1 N17901 OUTPINT IOUTP VMID DEV_SCH_H1
|
||||
X_U18 N459295 LIM_INP vnse
|
||||
R_R29 0 N1047728 2
|
||||
G_G8 DIST_OUTN DIST_OUTP N1056062 N1056052 1
|
||||
E_E9 N72619 VMID CMINT VMID 1
|
||||
X_U22 LIMITER_INN VMID N837077 VMID VCC VEE VMID VCN_OUT VC_OUT
|
||||
+ SOFT_LIM_OUTPUT
|
||||
X_U28 N109210 N109423 N1047668 N1047660 N1056358 N1055868 P2P P2N ERR_1
|
||||
+ ERR_2 ERR_3 VMID ERR
|
||||
R_R12 FBP OUTPINT 25
|
||||
R_R30 0 N1047706 2
|
||||
R_R16 N109210 N109423 1k
|
||||
C_C15 P2N P2P 15p
|
||||
C_C16 VMID N436166 400f
|
||||
R45 VMID N436166 2300
|
||||
R_R41 N1047706 N1047728 4
|
||||
R_R27 N1056358 N1055958 1
|
||||
E_E1 VMID 0 VCC N00961 0.5
|
||||
V_V3 N891663 N436166 0.25mVdc
|
||||
R_R31 0 N1056062 2
|
||||
*E_E3 CMCALC VMID OUTP N07972 0.5
|
||||
E_E3 CMCALC VMID OUTPINT N07972 0.5
|
||||
R_R33 CNTRL_OUT COMP_IN 1k
|
||||
X_U21 LIMITER_INP VMID N826132 VMID VCC VEE VMID VCN_OUT VC_OUT
|
||||
+ SOFT_LIM_OUTPUT
|
||||
C_C10 N1047668 N1047728 125p
|
||||
C_C18 N459295 N436166 100f
|
||||
X_U24 CNTRL_OUT INP INN VCC VEE VMID PD GND CONTROL
|
||||
R_R28 N1055868 N1055882 1
|
||||
R_R10 N72619 N65800 500
|
||||
C_C17 N459295 VMID 400f
|
||||
R46 N459295 VMID 2300
|
||||
G_G1 VCC VMID IOUTP VMID 1
|
||||
R_R32 0 N1056052 2 TC=0,0
|
||||
E_E2 N00961 0 0 VEE 1
|
||||
C_C11 N1047660 N1047706 125p
|
||||
X_U29 GBW_INN LIM_INN VCC VEE VMID IN_LIM
|
||||
R_R15 VEE PD 200k
|
||||
C_C9 N1055882 N1055958 8n
|
||||
*X_U23 N891663 N459295 femt
|
||||
X_U123 VMID N891663 femt
|
||||
X_U223 N459295 VMID femt
|
||||
E_E13 N837077 VMID DIST_OUTN N805589 1
|
||||
X_U12 GBW_OUTP GBW_OUTN GBW_INP GBW_INN SHDN VMID GBW_SLEW_FDA
|
||||
X_U26 INN INP ERR_1 VCC VEE VMID CM1_MON
|
||||
C_C12 N1056358 N1056062 40p
|
||||
C_C8 N1047868 N1047716 4.5n
|
||||
E_E12 N798182 VMID VMID CM_OUT 1
|
||||
V_VCN_OUT VCN_OUT VMID 0.01Vdc
|
||||
R_R36 P2N P2P 2
|
||||
R_R19 DIST_OUTN DIST_OUTP 2
|
||||
E_E14 N805589 VMID VMID CM_OUT 1
|
||||
E_E7 CM_OUT N15690 U3_OUTP U3_OUTN 1
|
||||
C_C13 N1055868 N1056052 40p
|
||||
C_C1 VMID CMINT 1f
|
||||
R_R34 INN N436166 1
|
||||
R_R35 INP N459295 1
|
||||
V_VCMoff CM CMINT 27mVdc
|
||||
X_H2 N18027 OUTNINT IOUTN VMID DEV_SCH_H2
|
||||
V_VC_OUT VC_OUT VMID 1.5Vdc
|
||||
G_G7 DIST_OUTN DIST_OUTP N1047728 N1047706 1
|
||||
*E_E4 N07972 VMID VMID OUTN 1
|
||||
E_E4 N07972 VMID VMID OUTNINT 1
|
||||
R_R14 FBN OUTNINT 25
|
||||
G_G9 P2P P2N GBW_OUTP GBW_OUTN -1
|
||||
G_G4 DIST_OUTN DIST_OUTP N1055958 N1055882 1
|
||||
R_R18 VMID DIST_OUTP 1
|
||||
E_E11 N826132 VMID DIST_OUTP N798182 1
|
||||
C_C4 0 N1047716 9n
|
||||
I_I2 N459295 VMID DC 65.7uAdc
|
||||
R_R25 N1047668 N1047716 1
|
||||
C_C6 0 N1055958 16n
|
||||
I_I1 N891663 VMID DC 66.3uAdc
|
||||
R_R37 VMID P2P 1
|
||||
V_V1 N501608 VMID 0.5
|
||||
X_U27 OUTP OUTN ERR_2 ERR_3 VCC VEE VMID CM2_MON
|
||||
G_G3 DIST_OUTN DIST_OUTP N1047716 N1047868 1
|
||||
X_S1 SHDN VMID VCC VEE DEV_SCH_S1
|
||||
X_U14 SHDN COMP_IN N501608 VMID COMPARATOR
|
||||
C_C14 VMID COMP_IN 12p
|
||||
C_C7 N1055882 0 16n
|
||||
R_R26 N1047660 N1047868 1
|
||||
R_R1 VMID CMINT 119k
|
||||
C_C2 VMID N65800 0.1p
|
||||
C_C5 N1047868 0 9n
|
||||
R_R44 N1056052 N1056062 4
|
||||
G_G5 DIST_OUTP DIST_OUTN P2P P2N -1
|
||||
R_R17 DIST_OUTN VMID 1
|
||||
X_S3 SHDN VMID N18027 N15690 DEV_SCH_S3
|
||||
R_R21 OUTNINT OUTN 10
|
||||
R_R38 P2N VMID 1
|
||||
E_E10 LIM_INN VMID N891663 VMID 1.0005
|
||||
.ENDS
|
||||
*$
|
||||
*
|
||||
.subckt DEV_SCH_S2 1 2 3 4
|
||||
S_S2 3 4 1 2 _S2
|
||||
RS_S2 1 2 1G
|
||||
.MODEL _S2 VSWITCH Roff=1e6 Ron=1.0 Voff=0.2V Von=0.8V
|
||||
.ends DEV_SCH_S2
|
||||
*$
|
||||
*
|
||||
.subckt DEV_SCH_H1 1 2 3 4
|
||||
H_H1 3 4 VH_H1 1
|
||||
VH_H1 1 2 0V
|
||||
.ends DEV_SCH_H1
|
||||
*$
|
||||
*
|
||||
.subckt DEV_SCH_H2 1 2 3 4
|
||||
H_H2 3 4 VH_H2 -1
|
||||
VH_H2 1 2 0V
|
||||
.ends DEV_SCH_H2
|
||||
*$
|
||||
*
|
||||
.subckt DEV_SCH_S1 1 2 3 4
|
||||
S_S1 3 4 1 2 _S1
|
||||
RS_S1 1 2 1G
|
||||
.MODEL _S1 VSWITCH Roff=1700 Ron=90 Voff=0.2V Von=0.8V
|
||||
.ends DEV_SCH_S1
|
||||
*$
|
||||
*
|
||||
.subckt DEV_SCH_S3 1 2 3 4
|
||||
S_S3 3 4 1 2 _S3
|
||||
RS_S3 1 2 1G
|
||||
.MODEL _S3 VSWITCH Roff=1e6 Ron=1.0 Voff=0.2V Von=0.8V
|
||||
.ends DEV_SCH_S3
|
||||
*$
|
||||
.SUBCKT VNSE 1 2
|
||||
.PARAM NLF = 9.5
|
||||
.PARAM FLW = 100
|
||||
.PARAM NVR = 1.3
|
||||
.PARAM GLF={PWR(FLW,0.25)*NLF/1164}
|
||||
.PARAM RNV={1.184*PWR(NVR,2)}
|
||||
.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16
|
||||
I1 0 7 10E-3
|
||||
I2 0 8 10E-3
|
||||
D1 7 0 DVN
|
||||
D2 8 0 DVN
|
||||
E1 3 6 7 8 {GLF}
|
||||
R1 3 0 1E9
|
||||
R2 3 0 1E9
|
||||
R3 3 6 1E9
|
||||
E2 6 4 5 0 10
|
||||
R4 5 0 {RNV}
|
||||
R5 5 0 {RNV}
|
||||
R6 3 4 1E9
|
||||
R7 4 0 1E9
|
||||
E3 1 2 3 4 1
|
||||
C1 1 0 1E-15
|
||||
C2 2 0 1E-15
|
||||
C3 1 2 1E-15
|
||||
.ENDS
|
||||
|
||||
*$
|
||||
.SUBCKT FEMT 1 2
|
||||
.PARAM NLFF = 2500
|
||||
.PARAM FLWF = 50e3
|
||||
.PARAM NVRF = 2900
|
||||
.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164}
|
||||
.PARAM RNVF={1.184*PWR(NVRF,2)}
|
||||
.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16
|
||||
I1 0 7 10E-3
|
||||
I2 0 8 10E-3
|
||||
D1 7 0 DVNF
|
||||
D2 8 0 DVNF
|
||||
E1 3 6 7 8 {GLFF}
|
||||
R1 3 0 1E9
|
||||
R2 3 0 1E9
|
||||
R3 3 6 1E9
|
||||
E2 6 4 5 0 10
|
||||
R4 5 0 {RNVF}
|
||||
R5 5 0 {RNVF}
|
||||
R6 3 4 1E9
|
||||
R7 4 0 1E9
|
||||
G1 1 2 3 4 1E-6
|
||||
C1 1 0 1E-15
|
||||
C2 2 0 1E-15
|
||||
C3 1 2 1E-15
|
||||
.ENDS
|
||||
|
||||
*$
|
||||
*
|
||||
.SUBCKT IN_LIM OUT IN VCC VEE GNDF
|
||||
.PARAM V1 = 1.2
|
||||
.PARAM V2 = 0.2
|
||||
EMAX NMAX GNDF VALUE = {V(VCC,GNDF) - V1}
|
||||
EMIN NMIN GNDF VALUE = {V(VEE,GNDF) - V2}
|
||||
EOUT OUT GNDF VALUE = {MAX(MIN(V(IN,GNDF),V(NMAX,GNDF)),V(NMIN,GNDF))}
|
||||
.ENDS
|
||||
*$
|
||||
*
|
||||
.SUBCKT LIMITER OUTP OUTN INP INN GNDF VCC VEE VCP VCN
|
||||
.PARAM VHRP0 = 1
|
||||
.PARAM VHRN0 = -1
|
||||
.PARAM GAIN = 0.5
|
||||
.PARAM ROUT = 100
|
||||
.PARAM V_ISC = 0.1
|
||||
.PARAM V_IOUT1 = 0.06
|
||||
.PARAM ROS = 5
|
||||
EZ1 NZ1 GNDF VALUE = {V(VCC,GNDF)}
|
||||
EZ2 NZ2 GNDF VALUE = {V(VCC,GNDF)-VHRP0}
|
||||
EHRK NHRK GNDF VALUE = {((V(VCC,GNDF)-VHRP0)/(V_ISC-V_IOUT1))-ROS}
|
||||
EHRP VHRP GNDF VALUE = {MAX(MIN(VHRP0+(V(VCP,GNDF)-V_IOUT1)*V(NHRK,GNDF),V(VCC,GNDF)),VHRP0)}
|
||||
EHRN VHRN GNDF VALUE = {MAX(MIN(VHRN0+(V(VCN,GNDF)+V_IOUT1)*V(NHRK,GNDF),VHRN0),V(VEE,GNDF))}
|
||||
EUL NUL GNDF VALUE = {V(VCC,GNDF) - V(VHRP,GNDF)}
|
||||
ELL NLL GNDF VALUE = {V(VEE,GNDF) - V(VHRN,GNDF)}
|
||||
RVCP_TERM VCP GNDF 1k
|
||||
RVCN_TERM VCN GNDF 1k
|
||||
EOUT OUTP OUTN VALUE = {MIN(MAX(GAIN*V(INP,INN),V(NLL,GNDF)),V(NUL,GNDF))}
|
||||
ROUT1+ OUTP GNDF {ROUT}
|
||||
ROUT1- OUTN GNDF {ROUT}
|
||||
.ENDS
|
||||
*$
|
||||
*
|
||||
.SUBCKT CM_CL_GAIN OUTP OUTN INP INN SHDN GNDF
|
||||
.PARAM GAIN = 1e4
|
||||
E1 OUTP OUTN VALUE = {GAIN*V(INP,INN)*V(SHDN,GNDF)}
|
||||
.ENDS
|
||||
*$
|
||||
*
|
||||
*
|
||||
.SUBCKT SOFT_LIM_OUTPUT OUTP OUTN INP INN VCC VEE GNDF VCN VC1
|
||||
.PARAM NORDER = 5
|
||||
.PARAM GAIN = 1
|
||||
** VCN is the headroom to mimic the CLAW curve
|
||||
** VC1 is the first threshold that begins limiting. It marks the point
|
||||
** where distortion increases dramatically for increasing output swing
|
||||
*EHR N_HR GNDF VALUE = {V(VCC,VCN)}
|
||||
EVC1 N_VC1 GNDF VALUE = {V(VC1,GNDF)}
|
||||
EHR N_OMAX GNDF VALUE = {V(VCC,VCN)}
|
||||
EDV N_DV GNDF VALUE = {(2/(NORDER-2))*(V(N_OMAX,GNDF)/GAIN - V(VC1,GNDF))}
|
||||
EIN N_IN GNDF VALUE = {V(INP,INN)}
|
||||
EV1 N_V1 GNDF VALUE = {V(VC1,GNDF)}
|
||||
EV2 N_V2 GNDF VALUE = {V(VC1,GNDF) + V(N_DV,GNDF)}
|
||||
EV3 N_V3 GNDF VALUE = {V(VC1,GNDF) + 2*V(N_DV,GNDF)}
|
||||
EV4 N_V4 GNDF VALUE = {V(VC1,GNDF) + 3*V(N_DV,GNDF)}
|
||||
EV5 N_V5 GNDF VALUE = {V(VC1,GNDF) + 4*V(N_DV,GNDF)}
|
||||
EG1 N_G1 GNDF VALUE = {GAIN}
|
||||
EG2 N_G2 GNDF VALUE = {0.75*GAIN}
|
||||
EG3 N_G3 GNDF VALUE = {0.50*GAIN}
|
||||
EG4 N_G4 GNDF VALUE = {0.25*GAIN}
|
||||
EG5 N_G5 GNDF VALUE = {0*GAIN}
|
||||
EB1 N_B1 GNDF VALUE = {0}
|
||||
EB2 N_B2 GNDF VALUE = {V(N_B1,GNDF) + 1*(GAIN/(NORDER-1))
|
||||
+ *(V(N_V5,GNDF) - NORDER*V(N_DV,GNDF) + 1*V(N_DV,GNDF))}
|
||||
EB3 N_B3 GNDF VALUE = {V(N_B1,GNDF) + 2*(GAIN/(NORDER-1))
|
||||
+ *(V(N_V5,GNDF) - NORDER*V(N_DV,GNDF) + 1.5*V(N_DV,GNDF))}
|
||||
EB4 N_B4 GNDF VALUE = {V(N_B1,GNDF) + 3*(GAIN/(NORDER-1))
|
||||
+ *(V(N_V5,GNDF) - NORDER*V(N_DV,GNDF) + 2*V(N_DV,GNDF))}
|
||||
EB5 N_B5 GNDF VALUE = {V(N_B1,GNDF) + 4*(GAIN/(NORDER-1))
|
||||
+ *(V(N_V5,GNDF) - NORDER*V(N_DV,GNDF) + 2.5*V(N_DV,GNDF))}
|
||||
E1U N_1U GNDF VALUE = {V(N_G1,GNDF)*V(N_IN,GNDF)}
|
||||
E2U N_2U GNDF VALUE = {V(N_G2,GNDF)*V(N_IN,GNDF) + V(N_B2,GNDF)}
|
||||
E3U N_3U GNDF VALUE = {V(N_G3,GNDF)*V(N_IN,GNDF) + V(N_B3,GNDF)}
|
||||
E4U N_4U GNDF VALUE = {V(N_G4,GNDF)*V(N_IN,GNDF) + V(N_B4,GNDF)}
|
||||
E5U N_5U GNDF VALUE = {V(N_G5,GNDF)*V(N_IN,GNDF) + V(N_B5,GNDF)}
|
||||
E2L N_2L GNDF VALUE = {V(N_G2,GNDF)*V(N_IN,GNDF) - V(N_B2,GNDF)}
|
||||
E3L N_3L GNDF VALUE = {V(N_G3,GNDF)*V(N_IN,GNDF) - V(N_B3,GNDF)}
|
||||
E4L N_4L GNDF VALUE = {V(N_G4,GNDF)*V(N_IN,GNDF) - V(N_B4,GNDF)}
|
||||
E5L N_5L GNDF VALUE = {V(N_G5,GNDF)*V(N_IN,GNDF) - V(N_B5,GNDF)}
|
||||
EX1 N_X1 GNDF VALUE = {MIN(MAX(V(N_1U,GNDF),V(N_2L,GNDF)),V(N_2U,GNDF))}
|
||||
EX2 N_X2 GNDF VALUE = {MIN(MAX(V(N_X1,GNDF),V(N_3L,GNDF)),V(N_3U,GNDF))}
|
||||
EX3 N_X3 GNDF VALUE = {MIN(MAX(V(N_X2,GNDF),V(N_4L,GNDF)),V(N_4U,GNDF))}
|
||||
EX4 OUTP OUTN VALUE = {MIN(MAX(V(N_X3,GNDF),V(N_5L,GNDF)),V(N_5U,GNDF))}
|
||||
ROUTP OUTP GNDF 100
|
||||
ROUTN OUTN GNDF 100
|
||||
ROUTD OUTP OUTN 200
|
||||
.ENDS
|
||||
*$
|
||||
**
|
||||
.SUBCKT ERR OUT1P OUT1N OUT2P OUT2N OUT3P OUT3N INP INN IN1 IN2 IN3 GNDF
|
||||
.PARAM a0 = 0
|
||||
.PARAM a1 = 1
|
||||
.PARAM a2 = {0.00115}
|
||||
.PARAM a3 = {0.005}
|
||||
.PARAM LL = -1000
|
||||
.PARAM UL = 1000
|
||||
Eid DIFF_IN 0 VALUE = {V(INP) - V(INN)}
|
||||
EIN1 N1 0 VALUE = {V(IN1,GNDF)}
|
||||
EIN2 N2 0 VALUE = {V(IN2,GNDF)}
|
||||
EIN3 N3 0 VALUE = {V(IN3,GNDF)}
|
||||
E1 OUT1P OUT1N VALUE = {MAX(MIN(a1*V(DIFF_IN),UL),LL)}
|
||||
E2 OUT2P OUT2N VALUE = {MAX(MIN(a2*V(N1)*V(N2)*PWR(V(DIFF_IN),2),UL),LL)}
|
||||
E3 OUT3P OUT3N VALUE = {MAX(MIN(a3*V(N1)*V(N3)*PWRS(V(DIFF_IN),3),UL),LL)}
|
||||
RE1+ OUT1P 0 100
|
||||
RE1- 0 OUT1N 100
|
||||
RE1d OUT1P OUT1N 200
|
||||
RE2+ OUT2P 0 100
|
||||
RE2- 0 OUT2N 100
|
||||
RE2d OUT2P OUT2N 200
|
||||
RE3+ OUT3P 0 100
|
||||
RE3- 0 OUT3N 100
|
||||
RE3d OUT3P OUT3N 200
|
||||
.ENDS
|
||||
*$
|
||||
**
|
||||
.SUBCKT CONTROL OUT INP INN VCC VEE GNDF PD GND
|
||||
.PARAM VS_MAX = 5.5
|
||||
.PARAM VIH = 0.5
|
||||
.PARAM VIL = 0.5
|
||||
.PARAM VIMID = 1.1
|
||||
****
|
||||
EVSTEST NVSTEST GNDF VALUE = {IF(V(VCC,VEE) > VS_MAX,0,1)}
|
||||
EVICM NVICM GNDF VALUE = {0.5*(V(INP,GNDF)+V(INN,GNDF))}
|
||||
EVICMMAXTEST NVICMMAXTEST GNDF VALUE = {IF(V(NVICM,GNDF) > V(VCC,GNDF)+VIH,0,1)}
|
||||
EVICMMINTEST NVICMMINTEST GNDF VALUE = {IF(V(NVICM,GNDF) < V(VEE,GNDF)-VIL,0,1)}
|
||||
* for this version, PD is inverted and ref<65>d to ground, not VEE *
|
||||
EPD NPD GNDF VALUE = {1 - MAX(MIN(1000*(V(PD,GND)-VIMID),1),0)}
|
||||
EOUT OUT GNDF VALUE = {V(NVSTEST,GNDF)*V(NVICMMAXTEST,GNDF)
|
||||
+*V(NVICMMINTEST,GNDF)*V(NPD,GNDF)}
|
||||
.ENDS
|
||||
*$
|
||||
**
|
||||
*
|
||||
*
|
||||
.SUBCKT GBW_SLEW_FDA OUTP OUTN INP INN SHDN GNDF
|
||||
.PARAM Aol = 57
|
||||
.PARAM GBW = 14e9
|
||||
.PARAM SRP = 20e9
|
||||
.PARAM SRN = 20e9
|
||||
.PARAM IT = 0.001
|
||||
.PARAM PI = 3.141592
|
||||
.PARAM IP = {IT*MAX(1,SRP/SRN)}
|
||||
.PARAM IN = {IT*MIN(-1,-SRN/SRP)}
|
||||
.PARAM CC = {IT*MAX(1/SRP,1/SRN)}
|
||||
.PARAM FP = {GBW/PWR(10,AOL/20)}
|
||||
.PARAM RC = {1/(2*PI*CC*FP)}
|
||||
.PARAM GC = {PWR(10,AOL/20)/RC}
|
||||
* Loading the VO pin with an external resistor will change the AOL.
|
||||
G1p GNDF OUTP VALUE = {MAX(MIN(GC*V(SHDN,GNDF)*V(INP,INN),IP),IN)}
|
||||
G1n OUTN GNDF VALUE = {MAX(MIN(GC*V(SHDN,GNDF)*V(INP,INN),IP),IN)}
|
||||
RG1p OUTP GNDF {0.5*RC}
|
||||
Cg1dp OUTP GNDF {2*CC}
|
||||
RG1n OUTN GNDF {0.5*RC}
|
||||
Cg1dn OUTN GNDF {2*CC}
|
||||
.ENDS
|
||||
*$
|
||||
*
|
||||
.SUBCKT CM1_MON IN1 IN2 OUT VCC VEE GNDF
|
||||
.PARAM VOS = -0.5
|
||||
.PARAM VMH = 1400
|
||||
.PARAM VML = -1400
|
||||
.PARAM VDH = 0.55
|
||||
.PARAM VDL = -0.55
|
||||
EC NC GNDF VALUE = {0.5*(V(IN1,GNDF)+V(IN2,GNDF)) - VOS}
|
||||
EBL NBL 0 VALUE = {-VML*(V(VEE,GNDF)- VDL)}
|
||||
EBH NBH 0 VALUE = {-VMH*(V(VCC,GNDF)- VDH)}
|
||||
EL1 NLL GNDF VALUE = {VML*V(NC,GNDF) + V(NBL)}
|
||||
EL2 NLH GNDF VALUE = {VMH*V(NC,GNDF) + V(NBH)}
|
||||
EO1 OUT GNDF VALUE = {MAX(MAX(V(NLL,GNDF),V(NLH,GNDF)),1)}
|
||||
.ENDS
|
||||
*$
|
||||
*
|
||||
.SUBCKT CM2_MON IN1 IN2 OUT2 OUT3 VCC VEE GNDF
|
||||
.PARAM VOS = 0
|
||||
.PARAM VM2H = 114.3
|
||||
.PARAM VM2L = -30.91
|
||||
.PARAM VD2H = 1.45
|
||||
.PARAM VD2L = -1.55
|
||||
.PARAM VM3H = 100
|
||||
.PARAM VM3L = -100
|
||||
.PARAM VD3 = 1.8
|
||||
EB2H NB2H 0 VALUE = {-VM2H*(V(VCC,GNDF)-VD2H)}
|
||||
EB2L NB2L 0 VALUE = {-VM2L*(V(VEE,GNDF)-VD2L)}
|
||||
EB3H NB3H 0 VALUE = {-VM3H*(V(VCC,GNDF)-VD3)}
|
||||
EB3L NB3L 0 VALUE = {-VM3H*(V(VCC,GNDF)-VD3)}
|
||||
EC NC GNDF VALUE = {0.5*(V(IN1,GNDF)+V(IN2,GNDF)) - VOS}
|
||||
EH2 NH2 GNDF VALUE = {VM2H*V(NC,GNDF) + V(NB2H)}
|
||||
EL2 NL2 GNDF VALUE = {VM2L*V(NC,GNDF) + V(NB2L)}
|
||||
EH3 NH3 GNDF VALUE = {VM3H*V(NC,GNDF) + V(NB3H)}
|
||||
EL3 NL3 GNDF VALUE = {VM3L*V(NC,GNDF) + V(NB3L)}
|
||||
EO2 OUT2 GNDF VALUE = {MAX(MAX(V(NH2,GNDF),V(NL2,GNDF)),1)}
|
||||
EO3 OUT3 GNDF VALUE = {MAX(MAX(V(NH3,GNDF),V(NL3,GNDF)),1)}
|
||||
.ENDS
|
||||
*$
|
||||
*
|
||||
.SUBCKT COMPARATOR OUT IN REF GNDF
|
||||
.PARAM VOUT_MAX = 1
|
||||
.PARAM VOUT_MIN = 0
|
||||
.PARAM GAIN = 1e4
|
||||
EOUT OUT GNDF VALUE = {MAX(MIN(GAIN*V(IN,REF),VOUT_MAX),VOUT_MIN)}
|
||||
.ENDS
|
||||
*$
|
||||
|
4546
spice/test/OptiMOS2_100V.lib
Executable file
4546
spice/test/OptiMOS2_100V.lib
Executable file
File diff suppressed because it is too large
Load Diff
324
spice/test/opa836_a.lib
Executable file
324
spice/test/opa836_a.lib
Executable file
@@ -0,0 +1,324 @@
|
||||
* OPA836 - Rev. A
|
||||
* Created by Sean Cashin; 2020-03-24
|
||||
* Created with Green-Williams-Lis Current Sense Amp Macro-model Architecture
|
||||
* Copyright 2020 by Texas Instruments Corporation
|
||||
******************************************************
|
||||
* MACRO-MODEL SIMULATED PARAMETERS:
|
||||
******************************************************
|
||||
* AC PARAMETERS
|
||||
**********************
|
||||
* CLOSED-LOOP OUTPUT IMPEDANCE VS. FREQUENCY (Zout vs. Freq.)
|
||||
* CLOSED-LOOP GAIN AND PHASE VS. FREQUENCY WITH RL, CL EFFECTS (Acl vs. Freq.)
|
||||
* COMMON-MODE REJECTION RATIO VS. FREQUENCY (CMRR vs. Freq.)
|
||||
* POWER SUPPLY REJECTION RATIO VS. FREQUENCY (PSRR vs. Freq.)
|
||||
* INPUT VOLTAGE NOISE DENSITY VS. FREQUENCY (en vs. Freq.)
|
||||
**********************
|
||||
* DC PARAMETERS
|
||||
**********************
|
||||
* INPUT COMMON-MODE VOLTAGE RANGE (Vcm)
|
||||
* GAIN ERROR (Eg)
|
||||
* INPUT BIAS CURRENT VS. INPUT COMMON-MODE VOLTAGE (Ib vs. Vcm)
|
||||
* INPUT OFFSET VOLTAGE VS. TEMPERATURE (Vos vs. Temp)
|
||||
* OUTPUT VOLTAGE SWING vs. OUTPUT CURRENT (Vout vs. Iout)
|
||||
* SHORT-CIRCUIT OUTPUT CURRENT (Isc)
|
||||
* QUIESCENT CURRENT (Iq)
|
||||
**********************
|
||||
* TRANSIENT PARAMETERS
|
||||
**********************
|
||||
* SLEW RATE (SR)
|
||||
* SETTLING TIME VS. CAPACITIVE LOAD (ts)
|
||||
* OVERLOAD RECOVERY TIME (tor)
|
||||
******************************************************
|
||||
.subckt OPA836 IN+ IN- OUT VCC VEE Vnot_pd
|
||||
******************************************************
|
||||
.MODEL R_NOISELESS RES (T_ABS=-273.15)
|
||||
C_C1 LN CLAMP 4.33E-9
|
||||
C_C1A16 N1102900 N1102910 16.12E-9
|
||||
C_C1A17 N1102916 N709248 159.2E-12
|
||||
C_C1A33 N1106172 N1106182 16.12E-9
|
||||
C_C1A34 N1106188 N706294 159.2E-12
|
||||
C_C33 N406634 0 1E-15
|
||||
C_C34 N317950 0 1
|
||||
C_C35 N406794 0 1E-15
|
||||
C_C39 N1252259 N1252249 350E-9
|
||||
C_C41 N1268170 N1268207 80E-15
|
||||
C_C44 N1464277 LN 100E-12
|
||||
C_C45 LN N1464195 400E-12
|
||||
C_C46 LN N1464227 170E-12
|
||||
C_C47 N1480336 N1480326 20E-15
|
||||
C_C48 N1682969 LN 200P
|
||||
C_C7 N31014 LN 1P
|
||||
C_C_CMN LN ESDN 1.2E-12
|
||||
C_C_CMN1 ESDN ESDP 1E-12
|
||||
C_C_CMP ESDP LN 1.2E-12
|
||||
C_C_VIMON LN VIMON 1E-9
|
||||
C_C_VOUT_S LN VOUT_S 1E-12
|
||||
E_E3 N112292 LN OUT LN 1
|
||||
E_E6 LN 0 N317950 0 1
|
||||
E_E7 VCCC 0 VCC 0 1
|
||||
E_E8 VEEE 0 VEE 0 1
|
||||
G_G100 N1480326 LN N1268170 LN -10
|
||||
G_G101 LP LN N1464227 LN -1
|
||||
G_G102 N1464195 LN CLAMP LN -1
|
||||
G_G103 N1464227 LN N1464195 LN -1
|
||||
G_G104 N1254878 LN N1480336 LN -240
|
||||
G_G106 N1106172 LN VEE_B LN -403E-3
|
||||
G_G107 VCC_CLP VEEE VCC_B VEE_B -1
|
||||
G_G108 VEE_CLP VCCC VCC_B VEE_B 1
|
||||
G_G109 N1619882 0 VIMON LN 15
|
||||
G_G110 0 VEE_CLP LN VIMON 6
|
||||
G_G111 VCC VEE N1682969 LN 1E-3
|
||||
G_G36 VCC_B 0 VCC 0 -1
|
||||
G_G37 VEE_B 0 VEE 0 -1
|
||||
G_G6 N25816 N11984 N709248 N706294 -1E-3
|
||||
G_G77 N1106188 LN N1106182 LN -2
|
||||
G_G87 N1102900 LN VCC_B LN -403E-3
|
||||
G_G88 N1102916 LN N1102910 LN -2
|
||||
G_G96 N1252249 LN N1464277 ZOUT -90.91
|
||||
G_G98 N1263527 LN N1252259 LN -22
|
||||
I_I1 VNOT_PD 0 DC 20N
|
||||
I_I_B N06456 LN DC 650E-9
|
||||
I_I_OS ESDN LN DC 620E-9
|
||||
I_I_Q VCC VEE DC 5E-6
|
||||
L_L1 LP N1464277 1E-9
|
||||
R_R1 ESDP IN+ R_NOISELESS 10E-3
|
||||
R_R10 ESDN N11991 R_NOISELESS 1E-3
|
||||
R_R107 VCC_B 0 R_NOISELESS 1
|
||||
R_R108 N317950 0 R_NOISELESS 1E12
|
||||
R_R109 VEE_B 0 R_NOISELESS 1
|
||||
R_R110 VCC_B N406634 R_NOISELESS 1E-3
|
||||
R_R111 N406634 N317950 R_NOISELESS 1E6
|
||||
R_R112 N317950 N406794 R_NOISELESS 1E6
|
||||
R_R113 N406794 VEE_B R_NOISELESS 1E-3
|
||||
R_R148 N1102916 LN R_NOISELESS 1
|
||||
R_R162 ESDN ESDP R_NOISELESS 200E3
|
||||
R_R183 N1102900 LN R_NOISELESS 1
|
||||
R_R185 N1106172 LN R_NOISELESS 1
|
||||
R_R186 N1106188 LN R_NOISELESS 1
|
||||
R_R1A16 N1102916 N709248 R_NOISELESS 10E3
|
||||
R_R1A31 N1102900 N1102910 R_NOISELESS 10E3
|
||||
R_R1A33 N1106172 N1106182 R_NOISELESS 10E3
|
||||
R_R1A34 N1106188 N706294 R_NOISELESS 10E3
|
||||
R_R2 ESDN IN- R_NOISELESS 10E-3
|
||||
R_R208 N1252259 N1252249 R_NOISELESS 10E3
|
||||
R_R209 LN N1252249 R_NOISELESS 1
|
||||
R_R21 N11984 N25816 R_NOISELESS 1E3
|
||||
R_R210 LN N1252259 R_NOISELESS 500
|
||||
R_R211 LN N1254878 R_NOISELESS 1
|
||||
R_R212 LN ZOUT R_NOISELESS 3000
|
||||
R_R213 ZOUT N1254878 R_NOISELESS 30000
|
||||
R_R218 LN N1263527 R_NOISELESS 1
|
||||
R_R219 LN N1268207 R_NOISELESS 10E3
|
||||
R_R220 N1268170 N1263527 R_NOISELESS 90E3
|
||||
R_R226 LN N1464277 R_NOISELESS 14
|
||||
R_R230 LN N1464195 R_NOISELESS 1
|
||||
R_R231 LN N1464227 R_NOISELESS 1
|
||||
R_R243 N1480336 N1480326 R_NOISELESS 10E3
|
||||
R_R244 LN N1480326 R_NOISELESS 1
|
||||
R_R245 LN N1480336 R_NOISELESS 20
|
||||
R_R248 VCC_CLP N1619882 R_NOISELESS 1E-3
|
||||
R_R25 LN N28602 R_NOISELESS 1E9
|
||||
R_R251 LN LP R_NOISELESS 1
|
||||
R_R254 LN AOLNET R_NOISELESS 1E6
|
||||
R_R255 LN N1682945 R_NOISELESS 1
|
||||
R_R26 N30136 LN R_NOISELESS 1E9
|
||||
R_R27 LN N30913 R_NOISELESS 1
|
||||
R_R28 N31014 N30913 R_NOISELESS 1E-3
|
||||
R_R2A17 N1102910 LN R_NOISELESS 99.73
|
||||
R_R2A18 N709248 LN R_NOISELESS 5
|
||||
R_R2A34 N1106182 LN R_NOISELESS 99.73
|
||||
R_R2A35 N706294 LN R_NOISELESS 5
|
||||
R_R3 LN ESDP R_NOISELESS 200E3
|
||||
R_R4 ESDN LN R_NOISELESS 200E3
|
||||
R_R8 N638941 N11006 R_NOISELESS 1E3
|
||||
R_R81 LN VIMON R_NOISELESS 1
|
||||
R_R83 LN N112292 R_NOISELESS 1E9
|
||||
R_R9 N11006 N11984 R_NOISELESS 1E-3
|
||||
R_R_VOUT_S VOUT_S N112292 R_NOISELESS 100
|
||||
V_V4 N1682557 LN 1VDC
|
||||
V_VCM_MAX N30136 VCC_B -1.1
|
||||
V_VCM_MIN N28602 VEE_B -0.2
|
||||
X_ESD_OUT OUT VCC VEE ESD_OUT_OPA836
|
||||
X_E_N ESDP N06456 VNSE_OPA836
|
||||
X_F1 VOUT OUT LN VIMON 08_OP_AMP_COMPLETE_F1_OPA836
|
||||
X_IQ_N LN VIMON LN VEE IQ_SRC_OPA836
|
||||
X_IQ_P VIMON LN VCC LN IQ_SRC_OPA836
|
||||
X_I_NP1 ESDN LN FEMT_OPA836
|
||||
X_S10 OUT VCC_CLP LN LP 08_OP_AMP_COMPLETE_S10_OPA836
|
||||
X_S11 VNOT_PD VEEE N1682945 N1682557 08_OP_AMP_COMPLETE_S11_OPA836
|
||||
X_S12 N1682969 N1682945 N1682969 N1682945 08_OP_AMP_COMPLETE_S12_OPA836
|
||||
X_S13 N1682969 LN AOLNET LN 08_OP_AMP_COMPLETE_S13_OPA836
|
||||
X_S14 N1682969 LN VOUT ZOUT 08_OP_AMP_COMPLETE_S14_OPA836
|
||||
X_S3 VIMON LN VCC_CLP VEEE 08_OP_AMP_COMPLETE_S3_OPA836
|
||||
X_S4 LN VIMON VEE_CLP VCCC 08_OP_AMP_COMPLETE_S4_OPA836
|
||||
X_S7 VEE_CLP OUT CLAMP LN 08_OP_AMP_COMPLETE_S7_OPA836
|
||||
X_S8 OUT VCC_CLP CLAMP LN 08_OP_AMP_COMPLETE_S8_OPA836
|
||||
X_S9 VEE_CLP OUT LN LP 08_OP_AMP_COMPLETE_S9_OPA836
|
||||
X_U1 LN N06456 FEMT_OPA836
|
||||
X_U2 N31014 N11991 AOLNET LN AOL_1_OPA836
|
||||
X_U3 AOLNET LN CLAMP LN AOL_2_OPA836
|
||||
X_VCM_CLAMP N25816 LN N30913 LN N30136 N28602 VCM_CLAMP_OPA836
|
||||
X_VOS_DRIFT N749288 N06456 VOS_DRIFT_OPA836
|
||||
X_VOS_VS_VCM N638941 N749288 VCC VEE VOS_VS_VCM_OPA836
|
||||
.ENDS OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_F1_OPA836 1 2 3 4
|
||||
F_F1 3 4 VF_F1 1
|
||||
VF_F1 1 2 0V
|
||||
.ENDS 08_OP_AMP_COMPLETE_F1_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S10_OPA836 1 2 3 4
|
||||
S_S10 3 4 1 2 _S10
|
||||
RS_S10 1 2 1G
|
||||
.MODEL _S10 VSWITCH ROFF=2E6 RON=1E-3 VOFF=-0.1 VON=0.06
|
||||
.ENDS 08_OP_AMP_COMPLETE_S10_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S11_OPA836 1 2 3 4
|
||||
S_S11 3 4 1 2 _S11
|
||||
RS_S11 1 2 1G
|
||||
.MODEL _S11 VSWITCH ROFF=1E9 RON=1E-3 VOFF=0.7 VON=2.1
|
||||
.ENDS 08_OP_AMP_COMPLETE_S11_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S12_OPA836 1 2 3 4
|
||||
S_S12 3 4 1 2 _S12
|
||||
RS_S12 1 2 1G
|
||||
.MODEL _S12 VSWITCH ROFF=700 RON=250 VOFF=-0.3 VON=0.1
|
||||
.ENDS 08_OP_AMP_COMPLETE_S12_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S13_OPA836 1 2 3 4
|
||||
S_S13 3 4 1 2 _S13
|
||||
RS_S13 1 2 1G
|
||||
.MODEL _S13 VSWITCH ROFF=0.001 RON=1E6 VOFF=0.3 VON=0.7
|
||||
.ENDS 08_OP_AMP_COMPLETE_S13_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S14_OPA836 1 2 3 4
|
||||
S_S14 3 4 1 2 _S14
|
||||
RS_S14 1 2 1G
|
||||
.MODEL _S14 VSWITCH ROFF=10MEG RON=21E-3 VOFF=0.3 VON=0.7
|
||||
.ENDS 08_OP_AMP_COMPLETE_S14_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S3_OPA836 1 2 3 4
|
||||
S_S3 3 4 1 2 _S3
|
||||
RS_S3 1 2 1G
|
||||
.MODEL _S3 VSWITCH ROFF=1 RON=1E-3 VOFF=55E-3 VON=80E-3
|
||||
.ENDS 08_OP_AMP_COMPLETE_S3_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S4_OPA836 1 2 3 4
|
||||
S_S4 3 4 1 2 _S4
|
||||
RS_S4 1 2 1G
|
||||
.MODEL _S4 VSWITCH ROFF=1 RON=1E-3 VOFF=55E-3 VON=80E-3
|
||||
.ENDS 08_OP_AMP_COMPLETE_S4_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S7_OPA836 1 2 3 4
|
||||
S_S7 3 4 1 2 _S7
|
||||
RS_S7 1 2 1G
|
||||
.MODEL _S7 VSWITCH ROFF=2E6 RON=1E-3 VOFF=-0.1 VON=0.06
|
||||
.ENDS 08_OP_AMP_COMPLETE_S7_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S8_OPA836 1 2 3 4
|
||||
S_S8 3 4 1 2 _S8
|
||||
RS_S8 1 2 1G
|
||||
.MODEL _S8 VSWITCH ROFF=2E6 RON=1E-3 VOFF=-0.1 VON=0.06
|
||||
.ENDS 08_OP_AMP_COMPLETE_S8_OPA836
|
||||
*
|
||||
.SUBCKT 08_OP_AMP_COMPLETE_S9_OPA836 1 2 3 4
|
||||
S_S9 3 4 1 2 _S9
|
||||
RS_S9 1 2 1G
|
||||
.MODEL _S9 VSWITCH ROFF=2E6 RON=1E-3 VOFF=-0.1 VON=0.06
|
||||
.ENDS 08_OP_AMP_COMPLETE_S9_OPA836
|
||||
*
|
||||
.SUBCKT AOL_1_OPA836 VC+ VC- IOUT+ IOUT-
|
||||
.PARAM GAIN = 1E-4
|
||||
.PARAM IPOS = .5
|
||||
.PARAM INEG = -.5
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
|
||||
.ENDS AOL_1_OPA836
|
||||
*
|
||||
.SUBCKT AOL_2_OPA836 VC+ VC- IOUT+ IOUT-
|
||||
.PARAM GAIN = 0.0286
|
||||
.PARAM IPOS = 1.96
|
||||
.PARAM INEG = -2.03
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
|
||||
.ENDS AOL_2_OPA836
|
||||
*
|
||||
.SUBCKT ESD_OUT_OPA836 OUT VCC VEE
|
||||
.MODEL ESD_SW VSWITCH(RON=50 ROFF=1E12 VON=500E-3 VOFF=450E-3)
|
||||
S1 VCC OUT OUT VCC ESD_SW
|
||||
S2 OUT VEE VEE OUT ESD_SW
|
||||
.ENDS ESD_OUT_OPA836
|
||||
*
|
||||
.SUBCKT FEMT_OPA836 1 2
|
||||
.PARAM FLWF=1
|
||||
.PARAM NLFF=100
|
||||
.PARAM NVRF=0.75
|
||||
.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164}
|
||||
.PARAM RNVF={1.184*PWR(NVRF,2)}
|
||||
.MODEL DNVF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16
|
||||
I1 0 7 10E-3
|
||||
I2 0 8 10E-3
|
||||
D1 7 0 DNVF
|
||||
D2 8 0 DNVF
|
||||
E1 3 6 7 8 {GLFF}
|
||||
R1 3 0 1E9
|
||||
R2 3 0 1E9
|
||||
R3 3 6 1E9
|
||||
E2 6 4 5 0 10
|
||||
R4 5 0 {RNVF}
|
||||
R5 5 0 {RNVF}
|
||||
R6 3 4 1E9
|
||||
R7 4 0 1E9
|
||||
G1 1 2 3 4 1E-6
|
||||
.ENDS FEMT_OPA836
|
||||
*
|
||||
.SUBCKT IQ_SRC_OPA836 VC+ VC- IOUT+ IOUT-
|
||||
.PARAM GAIN = 1E-3
|
||||
G1 IOUT+ IOUT- VALUE={IF( (V(VC+,VC-)<=0),0,GAIN*V(VC+,VC-) )}
|
||||
.ENDS IQ_SRC_OPA836
|
||||
*
|
||||
.SUBCKT VCM_CLAMP_OPA836 VIN+ VIN- IOUT- IOUT+ VP+ VP-
|
||||
.PARAM GAIN = 1
|
||||
G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VIN+,VIN-),V(VP-,VIN-), V(VP+,VIN-))}
|
||||
.ENDS VCM_CLAMP_OPA836
|
||||
*
|
||||
.SUBCKT VNSE_OPA836 1 2
|
||||
.PARAM FLW=1
|
||||
.PARAM NLF=75
|
||||
.PARAM NVR=4.6
|
||||
.PARAM GLF={PWR(FLW,0.25)*NLF/1164}
|
||||
.PARAM RNV={1.184*PWR(NVR,2)}
|
||||
.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16
|
||||
I1 0 7 10E-3
|
||||
I2 0 8 10E-3
|
||||
D1 7 0 DVN
|
||||
D2 8 0 DVN
|
||||
E1 3 6 7 8 {GLF}
|
||||
R1 3 0 1E9
|
||||
R2 3 0 1E9
|
||||
R3 3 6 1E9
|
||||
E2 6 4 5 0 10
|
||||
R4 5 0 {RNV}
|
||||
R5 5 0 {RNV}
|
||||
R6 3 4 1E9
|
||||
R7 4 0 1E9
|
||||
E3 1 2 3 4 1
|
||||
.ENDS VNSE_OPA836
|
||||
*
|
||||
.SUBCKT VOS_DRIFT_OPA836 VOS+ VOS-
|
||||
.PARAM DC = 45.12E-6
|
||||
.PARAM POL = 1
|
||||
.PARAM DRIFT = 20E-6
|
||||
E1 VOS+ VOS- VALUE={DC+POL*DRIFT*(TEMP-27)}
|
||||
.ENDS VOS_DRIFT_OPA836
|
||||
*
|
||||
.SUBCKT VOS_VS_VCM_OPA836 V+ V- REF+ REF-
|
||||
E1 V+ 1 TABLE {(V(REF+, V-))} =
|
||||
+(0.35, 450E-6)
|
||||
+(0.4, 435E-6)
|
||||
+(0.55, 275E-6)
|
||||
+(0.65, 150E-6)
|
||||
+(0.75, 75E-6)
|
||||
+(0.85, 25E-6)
|
||||
+(1, 0)
|
||||
V1 1 V- 0
|
||||
.ENDS VOS_VS_VCM_OPA836
|
||||
*
|
Reference in New Issue
Block a user