11 Commits

Author SHA1 Message Date
958d1f96d1 filtering stuff
All checks were successful
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in -15s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2024-12-02 22:55:39 -07:00
48d559f084 I'm not sure why exp creates such a bad tone 2024-12-02 22:38:56 -07:00
167a0b7aef start turning this into a class 2024-12-02 19:29:23 -07:00
2c9e9b0eb2 move some helpers to util.py 2024-12-02 18:56:43 -07:00
c8ace2330d vna calibration
All checks were successful
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in -10s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2024-12-02 18:07:40 -07:00
60ef43e66e Update .github/workflows/python_publish.yml
Some checks failed
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Failing after 1m1s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in 1m6s
2024-11-14 13:43:52 -07:00
a2044ba7de Update .github/workflows/python_publish.yml
Some checks failed
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in 1m6s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Failing after 1m0s
2024-11-14 13:42:43 -07:00
1fcebaf119 consistent use of underscores for charon_vna
Some checks failed
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in 1m7s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Failing after 1m1s
2024-11-14 13:21:45 -07:00
bb3d848fd6 Update README.md
Some checks failed
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in 1m11s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Failing after 1m0s
2024-11-11 11:41:18 -07:00
4d4e5558e1 add working demo VNA script. Not sure why the first run after power cycling pluto this gets garbage data for the first plots
All checks were successful
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in 1m8s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2024-11-10 13:06:28 -07:00
83d495920a add pluto example from adi
All checks were successful
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in 1m8s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2024-11-10 12:45:31 -07:00
7 changed files with 547 additions and 3 deletions

View File

@ -54,7 +54,13 @@ jobs:
with:
name: python-package-distributions
path: dist/
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Publish distribution 📦 to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
password: ${{ secrets.PYPI_API_TOKEN }}
password: ${{ secrets.PYPI_API_TOKEN }}
verbose: true
print-hash: true

View File

@ -1,6 +1,6 @@
# Charon
Named after [Pluto's moon](https://en.wikipedia.org/wiki/Charon_(moon)), Charon is a simple RF switch assembly for using the [ADI Pluto SDR]() as a vector network analyzer.
Named after [Pluto's moon](https://en.wikipedia.org/wiki/Charon_(moon)), Charon uses the [ADI Pluto SDR]() as a vector network analyzer. The basic usage is as a 1 port VNA but this can be extended to arbitrarily many ports with the addition of a couple RF switches.
## Installation

12
charon_vna/io_.py Normal file
View File

@ -0,0 +1,12 @@
from pathlib import Path
import skrf as rf
import xarray as xr
from util import net2s
# scikit-rf has no way to save files aside from touchstone and pickle
def cal2zarr(cal: rf.calibration.Calibration, outpath: Path):
ideals = [net2s(net) for net in cal.ideals]
measured = [net2s(net) for net in cal.measured]
# s.to_zarr(outpath)

View File

@ -0,0 +1,63 @@
# Copyright (C) 2019 Analog Devices, Inc.
#
# SPDX short identifier: ADIBSD
# I'm not sure why but sometimes I need to run this once to make the rest of my scripts work.
# Probably just me running things manually out of order or something but I'm throwing this in here until I verify.
import time
import adi
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
# Create radio
sdr = adi.Pluto(uri="ip:192.168.3.1")
# Configure properties
sdr.rx_rf_bandwidth = 4000000
sdr.rx_lo = 2000000000
sdr.tx_lo = 2000000000
sdr.tx_cyclic_buffer = True
sdr.tx_hardwaregain_chan0 = -30
sdr.gain_control_mode_chan0 = "slow_attack"
# Read properties
print("RX LO %s" % (sdr.rx_lo))
# Create a sinewave waveform
fs = int(sdr.sample_rate)
print(fs)
N = 1024
fc = int(-3000000 / (fs / N)) * (fs / N)
ts = 1 / float(fs)
t = np.arange(0, N * ts, ts)
i = np.cos(2 * np.pi * t * fc) * 2**14
q = np.sin(2 * np.pi * t * fc) * 2**14
iq = i + 1j * q
# Send data
sdr.tx(iq)
# Collect data
for r in range(20):
x = sdr.rx()
f, Pxx_den = signal.periodogram(x, fs, return_onesided=False)
plt.clf()
plt.semilogy(f, Pxx_den)
plt.ylim([1e-7, 1e2])
plt.xlabel("frequency [Hz]")
plt.ylabel("PSD [V**2/Hz]")
plt.grid(True)
plt.draw()
plt.pause(0.05)
time.sleep(0.1)
plt.show()
plt.plot(np.real(x))
plt.plot(np.imag(x))
plt.show()

79
charon_vna/util.py Normal file
View File

@ -0,0 +1,79 @@
import numpy as np
import skrf as rf
import xarray as xr
HAM_BANDS = [
[135.7e3, 137.8e3],
[472e3, 479e3],
[1.8e6, 2e6],
[3.5e6, 4e6],
[5332e3, 5405e3],
[7e6, 7.3e6],
[10.1e6, 10.15e6],
[14e6, 14.35e6],
[18.068e6, 18.168e6],
[21e6, 21.45e6],
[24.89e6, 24.99e6],
[28e6, 29.7e6],
[50e6, 54e6],
[144e6, 148e6],
[219e6, 220e6],
[222e6, 225e6],
[420e6, 450e6],
[902e6, 928e6],
[1240e6, 1300e6],
[2300e6, 2310e6],
[2390e6, 2450e6],
[3400e6, 3450e6],
[5650e6, 5925e6],
[10e9, 10.5e9],
[24e9, 24.25e9],
[47e9, 47.2e9],
[76e9, 81e9],
[122.25e9, 123e9],
[134e9, 141e9],
[241e9, 250e9],
[275e9, np.inf],
]
def db10(p):
return 10 * np.log10(np.abs(p))
def db20(p):
return 20 * np.log10(np.abs(p))
def minmax(x):
return (np.min(x), np.max(x))
def s2net(s: xr.DataArray) -> rf.Network:
net = rf.Network(frequency=s.frequency, f_unit="Hz", s=s)
return net
def net2s(net: rf.Network) -> xr.DataArray:
port_tuples = net.port_tuples
m = list(set(t[0] for t in port_tuples))
m.sort()
m = np.array(m)
m += 1 # skrf uses 0-indexed ports
n = list(set(t[0] for t in port_tuples))
n.sort()
n = np.array(n)
n += 1 # skrf uses 0-indexed ports
s = xr.DataArray(
net.s,
dims=["frequency", "m", "n"],
coords=dict(
frequency=net.f,
m=m,
n=n,
),
)
return s

381
charon_vna/vna.py Normal file
View File

@ -0,0 +1,381 @@
# %% imports
import copy
from pathlib import Path
from typing import Any, Dict, Optional, Tuple
import adi
import iio
import numpy as np
import skrf as rf
import xarray as xr
from matplotlib import pyplot as plt
from matplotlib.ticker import EngFormatter
from numpy import typing as npt
from scipy import signal
from util import HAM_BANDS, db20, net2s, s2net
dir_ = Path(__file__).parent
# %% connection
class Charon:
FREQUENCY_OFFSET = 1e6
def __init__(
self,
uri: str,
frequency: npt.ArrayLike = np.linspace(1e9, 2e9, 3),
ports: Tuple[int] = (1,),
):
self.ports = ports
self.frequency = frequency
# everything RF
self.sdr = adi.ad9361(uri=uri)
for attr, expected in [
("adi,2rx-2tx-mode-enable", True),
# ("adi,gpo-manual-mode-enable", True),
]:
# available configuration options:
# https://wiki.analog.com/resources/tools-software/linux-drivers/iio-transceiver/ad9361-customization
if bool(self.sdr._get_iio_debug_attr(attr)) != expected:
raise ValueError(
f"'{attr}' is not set in pluto. "
"See README.md for instructions for one time configuration instructions"
)
# TODO: it might be possible to change this on the fly.
# I think we'll actually just fail in __init__ of ad9361 if 2rx-2tx is wrong
self.sdr.rx_lo = int(self.frequency[0])
self.sdr.tx_lo = int(self.frequency[0])
self.sdr.sample_rate = 30e6
self.sdr.rx_rf_bandwidth = int(4e6)
self.sdr.tx_rf_bandwidth = int(4e6)
self.sdr.rx_destroy_buffer()
self.sdr.tx_destroy_buffer()
self.sdr.rx_enabled_channels = [0, 1]
self.sdr.tx_enabled_channels = [0]
self.sdr.loopback = 0
self.sdr.gain_control_mode_chan0 = "manual"
self.sdr.gain_control_mode_chan1 = "manual"
self.sdr.rx_hardwaregain_chan0 = 40
self.sdr.rx_hardwaregain_chan1 = 40
self.sdr.tx_hardwaregain_chan0 = -10
# switch control
ctx = iio.Context(uri)
self.ctrl = ctx.find_device("ad9361-phy")
# raw ad9361 register accesss:
# https://ez.analog.com/linux-software-drivers/f/q-a/120853/control-fmcomms3-s-gpo-with-python
# https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf
self.ctrl.reg_write(0x26, 0x90) # bit 7: AuxDAC Manual, bit 4: GPO Manual
self._set_gpo(self.ports[0] - 1)
# TODO: init AuxDAC
def get_config(self) -> Dict[str, Any]:
config = dict()
config["rx_lo"] = self.sdr.rx_lo
config["rx_rf_bandwidth"] = self.sdr.rx_rf_bandwidth
config["rx_enabled_channels"] = self.sdr.rx_enabled_channels
for chan in config["rx_enabled_channels"]:
config[f"rx_hardwaregain_chan{chan}"] = getattr(self.sdr, f"rx_hardwaregain_chan{chan}")
config[f"gain_control_mode_chan{chan}"] = getattr(self.sdr, f"gain_control_mode_chan{chan}")
config["tx_lo"] = self.sdr.tx_lo
config["tx_rf_bandwidth"] = self.sdr.tx_rf_bandwidth
config["tx_cyclic_buffer"] = self.sdr.tx_cyclic_buffer
config["tx_enabled_channels"] = self.sdr.tx_enabled_channels
for chan in config["tx_enabled_channels"]:
config[f"tx_hardwaregain_chan{chan}"] = getattr(self.sdr, f"tx_hardwaregain_chan{chan}")
config["filter"] = self.sdr.filter
config["sample_rate"] = self.sdr.sample_rate
config["loopback"] = self.sdr.loopback
return config
def _set_gpo(self, value: int) -> None:
self.ctrl.reg_write(0x27, (value & 0x0F) << 4) # bits 7-4: GPO3-0
def set_output_power(self, power: float):
if power == -5:
# FIXME: this is a hack because I don't want to go through re-calibration
tx_gain = -8
else:
raise NotImplementedError()
# # TODO: correct over frequency
# tx_gain_idx = np.abs(pout.sel(tx_channel=0) - power).argmin(dim="tx_gain")
# tx_gain = pout.coords["tx_gain"][tx_gain_idx]
self.sdr.tx_hardwaregain_chan0 = float(tx_gain)
def generate_tone(self, f: float, N: int = 1024, fs: Optional[float] = None):
if fs is None:
fs = self.sdr.sample_rate
fs = int(fs)
fc = int(f / (fs / N)) * (fs / N)
ts = 1 / float(fs)
t = np.arange(0, N * ts, ts)
i = np.cos(2 * np.pi * t * fc) * 2**14
q = np.sin(2 * np.pi * t * fc) * 2**14
iq = i + 1j * q
return iq
def set_output(self, frequency: float, power: float):
# TODO: switch to DDS in Pluto
self.sdr.tx_destroy_buffer()
self.set_output_power(power)
self.sdr.tx_lo = int(frequency - self.FREQUENCY_OFFSET)
self.sdr.tx_cyclic_buffer = True
self.sdr.tx(self.generate_tone(self.FREQUENCY_OFFSET))
def _rx(self, count: int = 1) -> npt.ArrayLike:
if count < 1:
raise ValueError
self.sdr.rx_destroy_buffer()
return np.concatenate([np.array(self.sdr.rx()) for _ in range(count)], axis=-1)
# %%
sdr = Charon("ip:192.168.3.1")
# %% initialization
config = sdr.get_config()
config
# %% generate tone
sdr.set_output(frequency=1e9 + sdr.FREQUENCY_OFFSET, power=-5)
# %% capture data
data = sdr._rx(1)
# %%
fig, axs = plt.subplots(2, 2, sharex=True, tight_layout=True)
# ddc_tone = np.exp(
# -1j * 2 * np.pi * (sdr.FREQUENCY_OFFSET / sdr.sdr.sample_rate) * np.arange(data.shape[-1]), dtype=np.complex128
# )
ddc_tone = sdr.generate_tone(-sdr.FREQUENCY_OFFSET) * 2**-14
ddc_data = data * ddc_tone
axs[0][0].plot(np.real(ddc_data).T, label="DDC")
axs[1][0].plot(np.imag(ddc_data).T, label="DDC")
ddc_rel = ddc_data[1] / ddc_data[0]
axs[0][1].plot(np.real(ddc_rel).T, label="DDC")
axs[1][1].plot(np.imag(ddc_rel).T, label="DDC")
n, wn = signal.buttord(
wp=0.3 * sdr.FREQUENCY_OFFSET,
ws=0.8 * sdr.FREQUENCY_OFFSET,
gpass=1,
gstop=40,
analog=False,
fs=sdr.sdr.sample_rate,
)
sos = signal.butter(n, wn, "lowpass", analog=False, output="sos", fs=sdr.sdr.sample_rate)
filt_data = signal.sosfiltfilt(sos, ddc_data, axis=-1)
axs[0][0].plot(np.real(filt_data).T, label="FILT")
axs[1][0].plot(np.imag(filt_data).T, label="FILT")
filt_rel = filt_data[1] / filt_data[0]
axs[0][1].plot(np.real(filt_rel).T, label="FILT")
axs[1][1].plot(np.imag(filt_rel).T, label="FILT")
s = np.mean(filt_rel)
axs[0][1].axhline(np.real(s), color="k")
axs[1][1].axhline(np.imag(s), color="k")
axs[0][0].grid(True)
axs[1][0].grid(True)
axs[0][1].grid(True)
axs[1][1].grid(True)
axs[0][0].legend(loc="lower right")
axs[1][0].legend(loc="lower right")
axs[0][1].legend(loc="lower right")
axs[1][1].legend(loc="lower right")
axs[0][0].set_ylabel("Real")
axs[1][0].set_ylabel("Imag")
axs[0][0].set_title("By Channel")
axs[0][1].set_title("Relative")
# %% Plot in time
fig, axs = plt.subplots(2, 1, sharex=True, tight_layout=True)
axs[0].plot(np.real(data).T)
axs[1].plot(np.imag(data).T)
axs[0].set_ylabel("Real")
axs[1].set_ylabel("Imag")
axs[0].grid(True)
axs[1].grid(True)
axs[-1].set_xlabel("Sample")
axs[-1].set_xlim(0, data.shape[-1])
fig.show()
# %%
fig, ax = plt.subplots(1, 1, tight_layout=True)
ax.plot(np.real(data).T, np.imag(data).T)
ax.grid(True)
ax.set_aspect("equal")
ax.set_xlabel("Real")
ax.set_ylabel("Imag")
ax.set_xlim(np.array([-1, 1]) * (2 ** (12 - 1) - 1))
ax.set_ylim(ax.get_xlim())
fig.show()
# %% Plot in frequency
f = np.fft.fftfreq(data.shape[-1], 1 / sdr.sdr.sample_rate)
RX_BITS = 10
Pxx_den = np.fft.fft(data, axis=-1) / (len(data) * 2 ** (2 * RX_BITS))
Pxx_den_ddc = np.fft.fft(ddc_data, axis=-1) / (len(ddc_data) * 2 ** (2 * RX_BITS))
Pxx_den_filt = np.fft.fft(filt_data, axis=-1) / (len(filt_data) * 2 ** (2 * RX_BITS))
fft_ddc_tone = np.fft.fft(ddc_tone, axis=-1) / (len(ddc_tone))
plt.figure()
for cc, chan in enumerate(sdr.sdr.rx_enabled_channels):
# plt.plot(
# np.fft.fftshift(f),
# db20(np.fft.fftshift(Pxx_den[cc])),
# label=f"Channel {chan}",
# )
plt.plot(
np.fft.fftshift(f),
db20(np.fft.fftshift(Pxx_den_ddc[cc])),
label=f"Channel {chan}",
)
plt.plot(
np.fft.fftshift(f),
db20(np.fft.fftshift(Pxx_den_filt[cc])),
label=f"Channel {chan}",
)
# plt.plot(
# np.fft.fftshift(f),
# db20(np.fft.fftshift(fft_ddc_tone)),
# label="DDC Tone",
# )
plt.legend()
# plt.ylim(1e-7, 1e2)
plt.ylim(-100, 0)
plt.xlabel("Frequency [Hz]")
plt.ylabel("Power [dBfs]")
plt.title(f"Fc = {sdr.sdr.rx_lo / 1e9} GHz")
plt.gca().xaxis.set_major_formatter(EngFormatter())
plt.grid(True)
plt.show()
# %%
def vna_capture(frequency: npt.ArrayLike):
s = xr.DataArray(
np.empty(len(frequency), dtype=np.complex128),
dims=["frequency"],
coords=dict(
frequency=frequency,
),
)
for freq in s.frequency.data:
set_output(frequency=freq, power=-5)
sdr.rx_destroy_buffer()
sdr.rx_lo = int(freq)
sdr.rx_enabled_channels = [0, 1]
sdr.gain_control_mode_chan0 = "manual"
sdr.gain_control_mode_chan1 = "manual"
sdr.rx_hardwaregain_chan0 = 40
sdr.rx_hardwaregain_chan1 = 40
rx = sdr.rx()
s.loc[dict(frequency=freq)] = np.mean(rx[1] / rx[0])
return s
# %%
s = vna_capture(frequency=np.linspace(70e6, 200e6, 101))
# %% Plot Logmag
fig, axs = plt.subplots(2, 1, sharex=True, tight_layout=True)
axs[0].plot(s.frequency, db20(s), label="Measured")
axs[1].plot(s.frequency, np.rad2deg(np.angle((s))), label="Measured")
axs[0].grid(True)
axs[1].grid(True)
axs[0].set_ylim(-80, 0)
axs[1].set_ylim(-200, 200)
axs[1].set_xlim(np.min(s.frequency), np.max(s.frequency))
axs[1].xaxis.set_major_formatter(EngFormatter(places=1))
axs[1].set_xlabel("Frequency")
axs[0].set_ylabel("|S11| [dB]")
axs[1].set_ylabel("∠S11 [deg]")
reference_sparams = None
reference_sparams = dir_ / "RBP-135+_Plus25degC.s2p"
if reference_sparams is not None:
ref = rf.Network(reference_sparams)
rbp135 = net2s(ref)
axs[0].plot(rbp135.frequency, db20(rbp135.sel(m=1, n=1)), label="Datasheet")
axs[1].plot(rbp135.frequency, np.rad2deg(np.angle(rbp135.sel(m=2, n=1))), label="Datasheet")
axs[0].legend()
axs[1].legend()
plt.show()
# %% SOL calibration
cal_frequency = np.linspace(70e6, 600e6, 101)
ideal_cal_frequency = rf.Frequency(np.min(cal_frequency), np.max(cal_frequency), len(cal_frequency))
input("Connect SHORT and press ENTER...")
short = vna_capture(frequency=cal_frequency)
input("Connect OPEN and press ENTER...")
open = vna_capture(frequency=cal_frequency)
input("Connect LOAD and press ENTER...")
load = vna_capture(frequency=cal_frequency)
short_net = s2net(short)
open_net = s2net(open)
load_net = s2net(load)
cal_ideal = rf.media.DefinedGammaZ0(frequency=ideal_cal_frequency)
calibration = rf.calibration.OnePort(
[short_net, open_net, load_net],
[cal_ideal.short(), cal_ideal.open(), cal_ideal.load(0)],
)
# %%
s = vna_capture(frequency=cal_frequency)
# %%
s_calibrated = calibration.apply_cal(s2net(s))
plt.figure()
s_calibrated.plot_s_smith()
# ref.plot_s_smith(m=1, n=1)
plt.show()
plt.figure()
for start, stop in HAM_BANDS:
plt.axvspan(start, stop, alpha=0.1, color="k")
s_calibrated.plot_s_db()
# ref.plot_s_db(m=1, n=1)
plt.gca().xaxis.set_major_formatter(EngFormatter())
plt.grid(True)
plt.xlim(s_calibrated.f[0], s_calibrated.f[-1])
plt.show()
plt.figure()
for start, stop in HAM_BANDS:
plt.axvspan(start, stop, alpha=0.1, color="k")
# s_calibrated.plot_s_vswr()
# drop invalid points
vswr = copy.deepcopy(s_calibrated.s_vswr[:, 0, 0])
vswr[vswr < 1] = np.nan
plt.plot(s_calibrated.f, vswr)
plt.axhline(1, color="k", linestyle="--")
plt.ylabel("VSWR")
plt.xlabel("Frequency [Hz]")
# ref.plot_s_vswr(m=1, n=1)
plt.gca().xaxis.set_major_formatter(EngFormatter())
plt.grid(True)
plt.ylim(0, 10)
plt.xlim(s_calibrated.f[0], s_calibrated.f[-1])
plt.show()
# %%

View File

@ -3,7 +3,7 @@ requires = ["setuptools", "setuptools-scm"]
build-backend = "setuptools.build_meta"
[project]
name = "charon-vna"
name = "charon_vna"
authors = [{ name = "Brendan Haines", email = "brendan.haines@gmail.com" }]
description = "RF Network Analyzer based on the Pluto SDR"
readme = "README.md"
@ -50,3 +50,6 @@ exclude = '''
| dist
)/
'''
[tool.isort]
profile = "black"