8 Commits

Author SHA1 Message Date
2a5f1657f4 add some analysis of generated signal
All checks were successful
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in -49s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2025-07-26 19:14:38 -06:00
7644cbe0ad fix path to version file
All checks were successful
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Successful in -58s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2025-07-21 21:40:21 -06:00
92c5876b23 switch to src-layout to avoid issues with multiple top level packages
Some checks failed
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Failing after -52s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2025-07-21 21:39:31 -06:00
3b12c21e20 typing + flake8
Some checks failed
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Failing after -53s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2025-07-16 22:00:07 -06:00
1170da8b04 plots 2025-07-16 21:56:30 -06:00
c5dc320989 2-port SOLT cal
Some checks failed
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Build distribution 📦 (push) Failing after -56s
Publish Python 🐍 distribution 📦 to PyPI and TestPyPI / Publish Python 🐍 distribution 📦 to PyPI (push) Has been skipped
2025-07-08 00:02:03 -06:00
452dddc19c functional 1 port calibration 2025-07-07 23:22:36 -06:00
3c02a4b388 allow downselecting measurements 2025-07-07 22:49:49 -06:00
15 changed files with 687 additions and 47 deletions

View File

@@ -1,24 +0,0 @@
# %% imports
import numpy as np
from matplotlib import pyplot as plt
from charon_vna.vna import Charon
# %%
frequency = np.linspace(80e6, 280e6, 31)
# %%
vna = Charon(frequency=frequency, ports=2)
# %%
s = vna.capture()
# %%
for m in s.m.data:
for n in s.n.data:
plt.plot(s.frequency, 20 * np.log10(np.abs(s.sel(m=m, n=n))), label="$S_{" + str(m) + str(n) + "}$")
plt.grid(True)
plt.legend()
# %%

File diff suppressed because one or more lines are too long

View File

@@ -9,7 +9,7 @@ description = "RF Network Analyzer based on the Pluto SDR"
readme = "README.md"
requires-python = ">=3"
# keywords = ["one", "two"]
license = { text = "MIT License" }
license = "MIT"
classifiers = ["Programming Language :: Python :: 3"]
dependencies = [
"numpy",
@@ -34,7 +34,7 @@ charon-cli = "charon_vna.cli:main"
charon-gui = "charon_vna.gui:main"
[tool.setuptools_scm]
version_file = "charon_vna/_version.py"
version_file = "src/charon_vna/_version.py"
[tool.black]
line-length = 120

View File

@@ -1,8 +1,9 @@
# %% imports
import copy
import pickle
from enum import IntEnum, unique
from pathlib import Path
from typing import Any, Callable, Dict, Literal, Tuple
from typing import Any, Callable, Dict, List, Literal, Tuple
import adi
import iio
@@ -136,7 +137,7 @@ class Charon:
self.ctrl = ctx.find_device("ad9361-phy")
# raw ad9361 register accesss:
# https://ez.analog.com/linux-software-drivers/f/q-a/120853/control-fmcomms3-s-gpo-with-python
# https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf # noqa: E501
# https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf
self.ctrl.reg_write(AD9361Register.EXTERNAL_LNA_CONTROL, 0x90) # bit 7: AuxDAC Manual, bit 4: GPO Manual
self.ctrl.reg_write(AD9361Register.AUXDAC_ENABLE_CONTROL, 0x3F)
@@ -204,7 +205,12 @@ class Charon:
# https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf
# page 13
# vout = 0.97 * vref + (0.000738 + 9e-6 * (vref * 1.6 - 2)) * auxdac_word[9:0] * step_factor - 0.3572 * step_factor + 0.05
# vout = (
# 0.97 * vref
# + (0.000738 + 9e-6 * (vref * 1.6 - 2)) * auxdac_word[9:0] * step_factor
# - 0.3572 * step_factor
# + 0.05
# )
# vout ~= (vref - 0.3572 * step_factor) + 0.000738 * auxdac_word[9:0] * step_factor
# which gives a 1.5V swing with step_factor == 2 and 0.75V swing with step_factor == 1
# vref basically just changes the minimum voltage with negligible impact on output scaling
@@ -305,7 +311,16 @@ class Charon:
return np.mean(data[1] / data[0])
def capture(self, callback: Callable[int, int] | None = None):
def capture(
self,
callback: Callable[[int, int], None] | None = None,
*,
measurements: List[Tuple[int, int]] = None,
):
if measurements is None:
measurements = [(m, n) for n in self.ports for m in self.ports]
measurements = list(measurements)
s = xr.DataArray(
np.zeros(
[len(self.frequency), len(self.ports), len(self.ports)],
@@ -319,30 +334,31 @@ class Charon:
),
)
total_count = len(s.m) * len(s.n) * len(s.frequency)
total_count = len(measurements) * len(s.frequency)
count = 0
for m in s.m.data:
for n in s.n.data:
self.set_switches(b=m - 1, a=n - 1)
if (m, n) in measurements:
self.set_switches(b=m - 1, a=n - 1)
for ff, freq in enumerate(s.frequency.data):
if callback is not None:
# report progress during sweep
callback(count, total_count)
for ff, freq in enumerate(s.frequency.data):
if callback is not None:
# report progress during sweep
callback(count, total_count)
self.set_output(frequency=freq, power=-5)
self.sdr.rx_destroy_buffer()
self.sdr.rx_lo = int(freq)
self.sdr.rx_enabled_channels = [0, 1]
self.sdr.gain_control_mode_chan0 = "manual"
self.sdr.gain_control_mode_chan1 = "manual"
self.sdr.rx_hardwaregain_chan0 = 40
self.sdr.rx_hardwaregain_chan1 = 40
rx = self.sdr.rx()
s.loc[dict(frequency=freq, m=m, n=n)] = np.mean(rx[1] / rx[0])
self.set_output(frequency=freq, power=-5)
self.sdr.rx_destroy_buffer()
self.sdr.rx_lo = int(freq)
self.sdr.rx_enabled_channels = [0, 1]
self.sdr.gain_control_mode_chan0 = "manual"
self.sdr.gain_control_mode_chan1 = "manual"
self.sdr.rx_hardwaregain_chan0 = 40
self.sdr.rx_hardwaregain_chan1 = 40
rx = self.sdr.rx()
s.loc[dict(frequency=freq, m=m, n=n)] = np.mean(rx[1] / rx[0])
count += 1
count += 1
if callback is not None:
# mark capture as complete
@@ -350,6 +366,92 @@ class Charon:
return s
def calibrate_sol(self, prompt: Callable[[str], None] | None = None, **kwargs) -> None:
if len(self.ports) != 1:
raise ValueError(
f"SOL calibration needs only one port but {len(self.ports)} ports are enabled. "
"Did you mean to use SOLT?"
)
if prompt is None:
prompt = lambda s: input(f"{s}\nENTER to continue...")
ideal = rf.media.DefinedGammaZ0(frequency=rf.media.Frequency.from_f(self.frequency, unit="Hz"))
ideals = [ideal.short(), ideal.open(), ideal.load(0)]
names = ["short", "open", "load"]
measured = list()
for name in names:
prompt(f"Connect standard {name} to port {self.ports[0]}")
measured.append(self.capture(**kwargs))
cal = rf.OnePort(measured=[s2net(m) for m in measured], ideals=ideals)
self.calibration = cal
def calibrate_solt(self, prompt: Callable[[str], None] | None = None, **kwargs) -> None:
if len(self.ports) < 2:
raise ValueError(
f"SOLT calibration needs at least two ports but {len(self.ports)} ports are enabled. "
"Did you mean to use SOL?"
)
if len(self.ports) > 2:
raise NotImplementedError("SOLT calibration with more than two ports not yet supported")
if prompt is None:
prompt = lambda s: input(f"{s}\nENTER to continue...")
ideal = rf.media.DefinedGammaZ0(frequency=rf.media.Frequency.from_f(self.frequency, unit="Hz"))
ideals = [ideal.short(), ideal.open(), ideal.load(0)]
ideals = [rf.two_port_reflect(id, id) for id in ideals]
thru = np.zeros((len(self.frequency), 2, 2), dtype=np.complex128)
thru[:, 0, 1] = 1
thru[:, 1, 0] = 1
thru = rf.Network(frequency=self.frequency, f_unit="Hz", s=thru)
ideals.append(thru)
names_1p = ["short", "open", "load"]
names_2p = ["thru"]
measured = list()
for name in names_1p:
measured_param = list()
for port in self.ports:
prompt(f"Connect standard {name} to port {port}")
measured_param.append(self.capture(measurements=[(port, port)], **kwargs).sel(m=port, n=port))
measured.append(rf.two_port_reflect(*[s2net(m) for m in measured_param]))
for name in names_2p:
prompt(f"Connect standard {name} between ports {self.ports[0]} and {self.ports[1]}")
measured.append(s2net(self.capture(**kwargs)))
cal = rf.SOLT(measured=measured, ideals=ideals)
self.calibration = cal
def save_calibration(self, path: Path | str):
path = Path(path)
if path.suffix.lower() == ".pkl":
with open(str(path), "wb") as f:
pickle.dump(self.calibration, f)
else:
raise NotImplementedError(f"Unknown calibration file extension: {path.suffix}")
def load_calibration(self, path: Path | str):
path = Path(path)
if path.suffix.lower() == ".pkl":
with open(str(path), "rb") as f:
cal = pickle.load(f)
if not isinstance(cal, rf.calibration.Calibration):
raise ValueError(f"Expected {rf.calibration.Calibration}, got {type(cal)}")
self.calibration = cal
else:
raise NotImplementedError(f"Unknown calibration file extension: {path.suffix}")
# %%
if __name__ == "__main__":

81
src/charon_vna/vna_dev.py Normal file
View File

@@ -0,0 +1,81 @@
# %% imports
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.ticker import EngFormatter
from charon_vna.util import db20, net2s, s2net
from charon_vna.vna import Charon
# %%
frequency = np.linspace(80e6, 280e6, 301)
# %%
vna = Charon(frequency=frequency, ports=2)
# %%
s = vna.capture()
# %%
for m in s.m.data:
for n in s.n.data:
plt.plot(s.frequency, db20(s.sel(m=m, n=n)), label="$S_{" + str(m) + str(n) + "}$")
plt.grid(True)
plt.legend()
plt.show()
# %%
vna.calibrate_sol()
# %%
vna.calibrate_solt()
# %%
vna.save_calibration("./calibration.pkl")
# %%
vna.load_calibration("./calibration.pkl")
# %%
s2 = net2s(vna.calibration.apply_cal(s2net(s)))
# s2.coords["m"] = s.m
# s2.coords["n"] = s.n
for m in s.m.data:
for n in s.n.data:
plt.plot(s.frequency, db20(s.sel(m=m, n=n)), label="$S_{" + str(m) + str(n) + "}$ (uncalibrated)")
plt.plot(s2.frequency, db20(s2.sel(m=m, n=n)), label="$S_{" + str(m) + str(n) + "}$ (calibrated)")
plt.grid(True)
plt.legend()
plt.xlabel("Frequency [Hz]")
plt.ylabel("Magnitude [dB]")
# plt.ylim(-30, 5)
plt.ylim(-25, 5)
plt.xlim(s.frequency[0], s.frequency[-1])
plt.gca().xaxis.set_major_formatter(EngFormatter())
plt.tight_layout()
plt.show()
for m in s.m.data:
for n in s.n.data:
if m != n:
plt.plot(
s.frequency,
np.angle(s.sel(m=m, n=n), deg=True),
label="$S_{" + str(m) + str(n) + "}$ (uncalibrated)",
)
plt.plot(
s2.frequency,
np.angle(s2.sel(m=m, n=n), deg=True),
label="$S_{" + str(m) + str(n) + "}$ (calibrated)",
)
plt.grid(True)
plt.legend()
plt.ylabel("Phase [deg]")
plt.xlabel("Frequency [Hz]")
plt.xlim(s.frequency[0], s.frequency[-1])
plt.gca().xaxis.set_major_formatter(EngFormatter())
plt.tight_layout()
plt.show()
# %%