Files
mellifera_firmware/drivers/sensor/bma255/bma255.c
Brendan Haines d0fd24548c
Some checks failed
Build / build (ubuntu-22.04) (push) Failing after 1m44s
Documentation / build (push) Successful in 22s
start splitting up BMX055 into the three ICs in its package
2024-07-04 23:09:31 -06:00

459 lines
15 KiB
C

/*
* Copyright (c) 2021 Nordic Semiconductor ASA
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT bosch_bma255
#include <zephyr/device.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bma255, CONFIG_SENSOR_LOG_LEVEL);
// Accelerometer registers
const uint8_t ACCEL_REG_BWG_CHIPID = 0x00;
const uint8_t ACCEL_REG_ACCD_X_LSB = 0x02;
const uint8_t ACCEL_REG_ACCD_X_MSB = 0x03;
const uint8_t ACCEL_REG_ACCD_Y_LSB = 0x04;
const uint8_t ACCEL_REG_ACCD_Y_MSB = 0x05;
const uint8_t ACCEL_REG_ACCD_Z_LSB = 0x06;
const uint8_t ACCEL_REG_ACCD_Z_MSB = 0x07;
const uint8_t ACCEL_REG_ACCD_TEMP = 0x08;
const uint8_t ACCEL_REG_INT_STATUS_0 = 0x09;
const uint8_t ACCEL_REG_INT_STATUS_1 = 0x0A;
const uint8_t ACCEL_REG_INT_STATUS_2 = 0x0B;
const uint8_t ACCEL_REG_INT_STATUS_3 = 0x0C;
const uint8_t ACCEL_REG_FIFO_STATUS = 0x0E;
const uint8_t ACCEL_REG_PMU_RANGE = 0x0F;
typedef enum accel_pmu_range_t
{
PMU_RANGE_2G = 0b0011, ///< DEFAULT
PMU_RANGE_4G = 0b0101,
PMU_RANGE_8G = 0b1000,
PMU_RANGE_16G = 0b1100,
} accel_pmu_range_t;
const uint8_t ACCEL_REG_PMU_BW = 0x10;
typedef enum accel_pmu_bw_t
{
PMU_BW_8HZ = 0b01000,
PMU_BW_16HZ = 0b01001,
PMU_BW_31HZ = 0b01010,
PMU_BW_63HZ = 0b01011,
PMU_BW_125HZ = 0b01100,
PMU_BW_250HZ = 0b01101,
PMU_BW_500HZ = 0b01110,
PMU_BW_1000HZ = 0b01111,
} accel_pmu_bw_t;
const uint8_t ACCEL_REG_PMU_LPW = 0x11;
const uint8_t ACCEL_REG_PMU_LOW_POWER = 0x12;
const uint8_t ACCEL_REG_ACCD_HBW = 0x13;
const uint8_t ACCEL_REG_BGW_SOFTRESET = 0x14;
const uint8_t BGW_SOFTRESET = 0xB6; ///< Soft reset occurs when this value is written to ACCEL_REG_BGW_SOFTRESET
const uint8_t ACCEL_REG_INT_EN_0 = 0x16;
const uint8_t ACCEL_REG_INT_EN_1 = 0x17;
const uint8_t ACCEL_REG_INT_EN_2 = 0x18;
const uint8_t ACCEL_REG_INT_MAP_0 = 0x19;
const uint8_t ACCEL_REG_INT_MAP_1 = 0x1A;
const uint8_t ACCEL_REG_INT_MAP_2 = 0x1B;
const uint8_t ACCEL_REG_INT_SRC = 0x1E;
const uint8_t ACCEL_REG_INT_OUT_CTRL = 0x20;
const uint8_t ACCEL_REG_INT_RST_LATCH = 0x21;
const uint8_t ACCEL_REG_INT_0 = 0x22;
const uint8_t ACCEL_REG_INT_1 = 0x23;
const uint8_t ACCEL_REG_INT_2 = 0x24;
const uint8_t ACCEL_REG_INT_3 = 0x25;
const uint8_t ACCEL_REG_INT_4 = 0x26;
const uint8_t ACCEL_REG_INT_5 = 0x27;
const uint8_t ACCEL_REG_INT_6 = 0x28;
const uint8_t ACCEL_REG_INT_7 = 0x29;
const uint8_t ACCEL_REG_INT_8 = 0x2A;
const uint8_t ACCEL_REG_INT_9 = 0x2B;
const uint8_t ACCEL_REG_INT_A = 0x2C;
const uint8_t ACCEL_REG_INT_B = 0x2D;
const uint8_t ACCEL_REG_INT_C = 0x2E;
const uint8_t ACCEL_REG_INT_D = 0x2F;
const uint8_t ACCEL_REG_FIFO_CONFIG_0 = 0x30;
const uint8_t ACCEL_REG_PMU_SELF_TEST = 0x32;
const uint8_t ACCEL_REG_TRIM_NVM_CTRL = 0x33;
const uint8_t ACCEL_REG_BGW_SPI3_WDT = 0x34;
const uint8_t ACCEL_REG_OFC_CTRL = 0x36;
const uint8_t ACCEL_REG_OFC_SETTING = 0x37;
const uint8_t ACCEL_REG_OFC_OFFSET_X = 0x38;
const uint8_t ACCEL_REG_OFC_OFFSET_Y = 0x39;
const uint8_t ACCEL_REG_OFC_OFFSET_Z = 0x3A;
const uint8_t ACCEL_REG_TRIM_GP0 = 0x3B;
const uint8_t ACCEL_REG_TRIM_GP1 = 0x3C;
const uint8_t ACCEL_REG_FIFO_CONFIG_1 = 0x3E;
const uint8_t ACCEL_REG_FIFO_DATA = 0x3F;
const uint8_t GYRO_REG_CHIP_ID = 0x00;
const uint8_t GYRO_REG_RATE_X_LSB = 0x02;
const uint8_t GYRO_REG_RATE_X_MSB = 0x03;
const uint8_t GYRO_REG_RATE_Y_LSB = 0x04;
const uint8_t GYRO_REG_RATE_Y_MSB = 0x05;
const uint8_t GYRO_REG_RATE_Z_LSB = 0x06;
const uint8_t GYRO_REG_RATE_Z_MSB = 0x07;
const uint8_t GYRO_REG_INT_STATUS_0 = 0x09;
const uint8_t GYRO_REG_INT_STATUS_1 = 0x0A;
const uint8_t GYRO_REG_INT_STATUS_2 = 0x0B;
const uint8_t GYRO_REG_INT_STATUS_3 = 0x0C;
const uint8_t GYRO_REG_FIFO_STATUS = 0x0E;
const uint8_t GYRO_REG_RANGE = 0x0F;
const uint8_t GYRO_REG_BW = 0x10;
const uint8_t GYRO_REG_LPM1 = 0x11;
const uint8_t GYRO_REG_LPM2 = 0x12;
const uint8_t GYRO_REG_RATE_HBW = 0x13;
const uint8_t GYRO_REG_BGW_SOFTRESET = 0x14;
const uint8_t GYRO_REG_INT_EN_0 = 0x15;
const uint8_t GYRO_REG_INT_EN_1 = 0x16;
const uint8_t GYRO_REG_INT_MAP_0 = 0x17;
const uint8_t GYRO_REG_INT_MAP_1 = 0x18;
const uint8_t GYRO_REG_INT_MAP_2 = 0x19;
const uint8_t GYRO_REG_INT_SOURCE_1 = 0x1A;
const uint8_t GYRO_REG_INT_SOURCE_2 = 0x1B;
// const uint8_t GYRO_REG_ = 0x1C;
// const uint8_t GYRO_REG_ = 0x1E;
const uint8_t GYRO_REG_INT_RST_LATCH = 0x21;
const uint8_t GYRO_REG_HIGH_TH_X = 0x22;
const uint8_t GYRO_REG_HIGH_DUR_X = 0x23;
const uint8_t GYRO_REG_HIGH_TH_Y = 0x24;
const uint8_t GYRO_REG_HIGH_DUR_Y = 0x25;
const uint8_t GYRO_REG_HIGH_TH_Z = 0x26;
const uint8_t GYRO_REG_HIGH_DUR_Z = 0x27;
const uint8_t GYRO_REG_SOC = 0x31;
const uint8_t GYRO_REG_A_FOC = 0x32;
const uint8_t GYRO_REG_TRIM_NVM_CTRL = 0x33;
const uint8_t GYRO_REG_BGW_SPI3_WDT = 0x34;
const uint8_t GYRO_REG_OFC1 = 0x36;
const uint8_t GYRO_REG_OFC2 = 0x37;
const uint8_t GYRO_REG_OFC3 = 0x38;
const uint8_t GYRO_REG_OFC4 = 0x39;
const uint8_t GYRO_REG_TRIM_GP0 = 0x3A;
const uint8_t GYRO_REG_TRIM_GP1 = 0x3B;
const uint8_t GYRO_REG_BIST = 0x3C;
const uint8_t GYRO_REG_FIFO_CONFIG_0 = 0x3D;
const uint8_t GYRO_REG_FIFO_CONFIG_1 = 0x3E;
const uint8_t MAG_REG_CHIP_ID = 0x40;
const uint8_t MAG_REG_DATA_X_LSB = 0x42;
const uint8_t MAG_REG_DATA_X_MSB = 0x43;
const uint8_t MAG_REG_DATA_Y_LSB = 0x44;
const uint8_t MAG_REG_DATA_Y_MSB = 0x45;
const uint8_t MAG_REG_DATA_Z_LSB = 0x46;
const uint8_t MAG_REG_DATA_Z_MSB = 0x47;
const uint8_t MAG_REG_RHALL_LSB = 0x48;
const uint8_t MAG_REG_RHALL_MSB = 0x49;
const uint8_t MAG_REG_INT_STATUS = 0x4A;
const uint8_t MAG_REG_POWER = 0x4B;
typedef enum mag_power_t
{
MAG_POWER_POWER_ON = 0x01,
MAG_POWER_RESET = 0x82,
} mag_power_t;
const uint8_t MAG_REG_MODE = 0x4C;
typedef enum mag_mode_t
{
MAG_MODE_OPMODE_NORMAL = 0x00 << 1,
MAG_MODE_OPMODE_FORCED = 0x01 << 1,
MAG_MODE_OPMODE_SLEEP_MODE = 0x11 << 1,
} mag_mode_t;
const uint8_t MAG_REG_INT_ENABLE = 0x4D;
const uint8_t MAG_REG_INT_SETTINGS = 0x4E;
const uint8_t MAG_REG_LOW_THRESH = 0x4F;
const uint8_t MAG_REG_HIGH_THRESH = 0x50;
const uint8_t MAG_REG_REP_XY = 0x51;
const uint8_t MAG_REG_REP_Z = 0x52;
struct bma255_data
{
int16_t accel_x;
int16_t accel_y;
int16_t accel_z;
int16_t gyro_x;
int16_t gyro_y;
int16_t gyro_z;
int16_t mag_x;
int16_t mag_y;
int16_t mag_z;
int8_t temperature;
};
struct bma255_config
{
struct i2c_dt_spec bus;
#ifdef CONFIG_INA230_TRIGGER
bool trig_enabled;
uint16_t mask;
const struct gpio_dt_spec alert_gpio;
uint16_t alert_limit;
#endif /* CONFIG_INA230_TRIGGER */
};
static int bma255_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
const struct bma255_config *config = dev->config;
struct bma255_data *data = dev->data;
int ret;
uint8_t accel[6];
ret = i2c_burst_read_dt(&config->bus, ACCEL_REG_ACCD_X_LSB, accel, sizeof(accel));
if (ret < 0)
{
LOG_ERR("Failed to read acceleration registers!");
return ret;
}
data->accel_x = ((int16_t)sys_get_le16(&accel[0])) >> 4;
data->accel_y = ((int16_t)sys_get_le16(&accel[2])) >> 4;
data->accel_z = ((int16_t)sys_get_le16(&accel[4])) >> 4;
uint8_t gyro[6];
struct i2c_dt_spec gyro_bus = config->bus;
gyro_bus.addr = 0x68;
ret = i2c_burst_read_dt(&gyro_bus, GYRO_REG_RATE_X_LSB, gyro, sizeof(gyro));
if (ret < 0)
{
LOG_ERR("Failed to read gyro registers!");
return ret;
}
data->gyro_x = ((int16_t)sys_get_le16(&gyro[0]));
data->gyro_y = ((int16_t)sys_get_le16(&gyro[2]));
data->gyro_z = ((int16_t)sys_get_le16(&gyro[4]));
uint8_t mag[6];
struct i2c_dt_spec mag_bus = config->bus;
mag_bus.addr = 0x10;
ret = i2c_burst_read_dt(&mag_bus, MAG_REG_DATA_X_LSB, mag, sizeof(mag));
if (ret < 0)
{
LOG_ERR("Failed to read gyro registers!");
return ret;
}
data->mag_x = ((int16_t)sys_get_le16(&mag[0])) >> 1;
data->mag_y = ((int16_t)sys_get_le16(&mag[2])) >> 1;
data->mag_z = ((int16_t)sys_get_le16(&mag[4])) >> 1;
ret = i2c_burst_read_dt(&config->bus, ACCEL_REG_ACCD_TEMP, &data->temperature, sizeof(data->temperature));
if (ret < 0)
{
LOG_ERR("Failed to read temperature register!");
return ret;
}
return 0;
}
static int bma255_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct bma255_data *data = dev->data;
switch (chan)
{
// degrees C
case SENSOR_CHAN_DIE_TEMP:
// 0.5K/LSB, center temperature is 23C
val->val1 = 23 + data->temperature / 2;
val->val2 = 0; // TODO: don't throw out LSB
break;
// m/s^2
case SENSOR_CHAN_ACCEL_X:
{
float accel = data->accel_x * 0.00098 * 9.80665; // to gees, to m/s^2
val->val1 = accel;
val->val2 = (accel - val->val1) * 1000000;
break;
}
case SENSOR_CHAN_ACCEL_Y:
{
float accel = data->accel_y * 0.00098 * 9.80665; // to gees, to m/s^2
val->val1 = accel;
val->val2 = (accel - val->val1) * 1000000;
break;
}
case SENSOR_CHAN_ACCEL_Z:
{
// For now assume 2g since that's the default value
// 2g 0.98mg/LSB
// 4g 1.95mg/LSB
// 8g 3.91mg/LSB
// 16g 7.81mg/LSB
// 1 g = 9.80665 m/s^2
float accel = data->accel_z * 0.00098 * 9.80665; // to gees, to m/s^2
val->val1 = accel;
val->val2 = (accel - val->val1) * 1000000;
break;
}
// radians/second
case SENSOR_CHAN_GYRO_X:
{
float rate = data->gyro_x * 2000.0 / 32767;
val->val1 = rate;
val->val2 = (rate - val->val1) * 1000000;
break;
}
case SENSOR_CHAN_GYRO_Y:
{
float rate = data->gyro_y * 2000.0 / 32767;
val->val1 = rate;
val->val2 = (rate - val->val1) * 1000000;
break;
}
case SENSOR_CHAN_GYRO_Z:
{
float rate = data->gyro_z * 2000.0 / 32767;
val->val1 = rate;
val->val2 = (rate - val->val1) * 1000000;
break;
}
// Gauss
case SENSOR_CHAN_MAGN_X:
{
float rate = data->mag_x * 1300.0 / (2 << 15) / 100; // to uT, to gauss
val->val1 = rate;
val->val2 = (rate - val->val1) * 1000000;
break;
}
case SENSOR_CHAN_MAGN_Y:
{
float rate = data->mag_y * 1300.0 / (2 << 15) / 100; // to uT, to gauss
val->val1 = rate;
val->val2 = (rate - val->val1) * 1000000;
break;
}
case SENSOR_CHAN_MAGN_Z:
{
float rate = data->mag_z * 2500.0 / (2 << 15) / 100; // to uT, to gauss
val->val1 = rate;
val->val2 = (rate - val->val1) * 1000000;
break;
}
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api bma255_api = {
.sample_fetch = &bma255_sample_fetch,
.channel_get = &bma255_channel_get,
};
static int bma255_init(const struct device *dev)
{
const struct bma255_config *const config = dev->config;
int ret;
if (!device_is_ready(config->bus.bus))
{
LOG_ERR("I2C bus %s is not ready", config->bus.bus->name);
return -ENODEV;
}
uint8_t chip_id;
ret = i2c_burst_read_dt(&config->bus, ACCEL_REG_BWG_CHIPID, &chip_id, sizeof(chip_id));
if (ret < 0)
{
LOG_ERR("Failed to read chip ID register!");
return ret;
}
const uint8_t CHIP_ID = 0xfa;
if (chip_id != CHIP_ID)
{
LOG_ERR("Chip ID read from %s incorrect. Read 0x%02X, expected 0x%02X", dev->name, chip_id, CHIP_ID);
}
// // Reset the sensor
// uint8_t reset_val = BGW_SOFTRESET;
// i2c_burst_write_dt(&config->bus, ACCEL_REG_BGW_SOFTRESET, &reset_val, sizeof(reset_val));
// // Wait for device to reset
uint8_t lpw;
ret = i2c_burst_read_dt(&config->bus, ACCEL_REG_PMU_LPW, &lpw, sizeof(lpw));
if (ret < 0)
{
LOG_ERR("Failed to read LPW register!");
return ret;
}
LOG_INF("LPW register: 0x%02X", lpw);
// Write configuration
uint8_t accel_range = PMU_RANGE_2G;
i2c_burst_write_dt(&config->bus, ACCEL_REG_PMU_RANGE, &accel_range, sizeof(accel_range));
uint8_t accel_bw = PMU_BW_8HZ;
i2c_burst_write_dt(&config->bus, ACCEL_REG_PMU_BW, &accel_bw, sizeof(accel_bw));
uint8_t hbw = (1 << 7); // data_high_bw (read filtered data) and enable lsb/msb shadowing
i2c_burst_write_dt(&config->bus, ACCEL_REG_ACCD_HBW, &hbw, sizeof(hbw));
struct i2c_dt_spec gyro_bus = config->bus;
gyro_bus.addr = 0x68;
uint8_t gyro_chip_id;
ret = i2c_burst_read_dt(&gyro_bus, GYRO_REG_CHIP_ID, &gyro_chip_id, sizeof(gyro_chip_id));
if (ret < 0)
{
LOG_ERR("Failed to read gyro chip ID register!");
return ret;
}
const uint8_t GYRO_CHIP_ID = 0x0f;
if (gyro_chip_id != GYRO_CHIP_ID)
{
LOG_ERR("Gyro chip ID read from %s incorrect. Read 0x%02X, expected 0x%02X", dev->name, gyro_chip_id, GYRO_CHIP_ID);
}
struct i2c_dt_spec mag_bus = config->bus;
mag_bus.addr = 0x10;
uint8_t mag_power = MAG_POWER_POWER_ON;
ret = i2c_burst_write_dt(&mag_bus, MAG_REG_POWER, &mag_power, sizeof(mag_power));
if (ret < 0)
{
LOG_ERR("Failed to power up magnetometer");
return ret;
}
uint8_t mag_mode = MAG_MODE_OPMODE_NORMAL;
ret = i2c_burst_write_dt(&mag_bus, MAG_REG_MODE, &mag_mode, sizeof(mag_mode));
if (ret < 0)
{
LOG_ERR("Failed to start magnetometer");
return ret;
}
uint8_t mag_chip_id;
ret = i2c_burst_read_dt(&mag_bus, MAG_REG_CHIP_ID, &mag_chip_id, sizeof(mag_chip_id));
if (ret < 0)
{
LOG_ERR("Failed to read magnetometer chip ID register!");
return ret;
}
const uint8_t MAG_CHIP_ID = 0x32;
if (mag_chip_id != MAG_CHIP_ID)
{
LOG_ERR("Mag chip ID read from %s incorrect. Read 0x%02X, expected 0x%02X", dev->name, mag_chip_id, MAG_CHIP_ID);
}
return 0;
}
#define BMA255_INIT(i) \
static struct bma255_data bma255_data_##i; \
\
static const struct bma255_config bma255_config_##i = { \
.bus = I2C_DT_SPEC_INST_GET(i), \
}; \
\
SENSOR_DEVICE_DT_INST_DEFINE(i, &bma255_init, NULL, \
&bma255_data_##i, \
&bma255_config_##i, POST_KERNEL, \
CONFIG_SENSOR_INIT_PRIORITY, &bma255_api);
DT_INST_FOREACH_STATUS_OKAY(BMA255_INIT)