kicad/spice/copy/sub/ADI1.lib

9080 lines
220 KiB
Plaintext
Executable File

* Copyright (c) 1998-2019 Analog Devices, Inc. All rights reserved.
*
.subckt AD549 1 2 3 4 5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=.11f ink=1 incm=.0011f incmk=1
M1 3 N005 5 5 N temp=27
M2 4 N005 5 5 P temp=27
C3 3 5 2p
C4 5 4 2p
C6 3 1 .2p Rpar=4000T noiseless
C7 1 4 .2p noiseless Rpar=4000T
C8 2 4 .2p Rpar=4000T noiseless
C9 3 2 .2p Rpar=4000T noiseless
A2 0 N006 M M M M N005 M OTA g=36u Iout=17u en=35n enk=55 Vlow=-1e308 Vhigh=1e308 Cout= 5.5p
D1 N005 5 Y
D6 5 N005 Y
C1 2 1 .8p Rpar=10T noiseless
G1 0 M 3 0 1m
G2 0 M 4 0 1m
R3 M 0 1K noiseless
S1 N005 M 4 3 UVLO
D3 N005 3 X
D4 4 N005 X
B3 0 N004 I=2m*dnlim(uplim(V(1),V(3)-.8,.1), V(4)+3, .1)+100n*V(1)
B4 N004 0 I=2m*dnlim(uplim(V(2),V(3)-1.25,.1), V(4)+3, .1)+100n*V(2)
C12 N004 0 20p Rpar=1K noiseless
C2 N006 0 20p Rpar=1K noiseless
L1 N004 N006 20µ
.model X D(Ron=5K Roff=100G Vfwd=-1.25 epsilon=.1 noiseless)
.model Y D(Ron=5K Roff=1T Vfwd=2.5 epsilon=.1 noiseless)
.model N VDMOS(Vto=-250m Kp=4m Ksubthres=.1 noiseless)
.model P VDMOS(Vto=250m Kp=4m pchan Ksubthres=1. noiseless)
.model UVLO SW(Ron=1K Roff=100G Vt=-3.75 Vh=.25 noiseless)
.ends AD549
*
.subckt AD712 1 2 3 4 5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=.01p ink=10 incm=.001p incmk=10
M1 3 N006 5 5 N temp=27
M2 4 N006 5 5 P temp=27
C3 3 5 2p
C4 5 4 2p
C6 3 1 1.375p Rpar=750G noiseless
A2 0 N005 M M M M N006 M OTA g=130u Isrc=90u Isink=-120u en=16n enk=100 Vlow=-1e308 Vhigh=1e308 Cout= 4p asym
C10 N005 0 .5p Rpar=1K noiseless
D1 N006 5 Y
D6 5 N006 Y
C1 2 1 4.125p noiseless
G1 0 M 3 0 1m
G2 0 M 4 0 1m
R3 M 0 1K noiseless
S1 N006 M 4 3 UVLO
D3 N006 3 X
D4 4 N006 X
D2 3 4 IQ
C7 1 4 1.375p Rpar=750G noiseless
C8 3 2 1.375p Rpar=750G noiseless
C9 2 4 1.375p Rpar=750G noiseless
I1 1 4 25p load
I2 2 4 25p load
B1 N005 0 I=1m*dnlim(uplim(V(2),V(3)-1,.1), V(4)+3.5, .1)+100n*V(2)
B2 0 N005 I=1m*dnlim(uplim(V(1),V(3)-1,.1), V(4)+3.5, .1)+100n*V(1)
.model X D(Ron=10K Roff=100G Vfwd=-1.25 epsilon=.1 noiseless)
.model Y D(Ron=500 Roff=1T Vfwd=2.86 epsilon=.1 noiseless)
.model N VDMOS(Vto=-250m Kp=5m Ksubthres=.2 noiseless)
.model P VDMOS(Vto=250m Kp=5m pchan Ksubthres=.2 noiseless)
.model UVLO SW(Ron=1K Roff=5G Vt=-3.75 Vh=.25 noiseless)
.model IQ D(Ron=2K Vfwd=2 epsilon=1 Ilimit=4.7m noiseless)
.ends AD712
*
.subckt AD746 1 2 3 4 5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=.01p ink=10 incm=.001p incmk=10
M1 3 N005 5 5 N temp=27
M2 4 N005 5 5 P temp=27
C3 3 5 2p
C4 5 4 2p
C6 3 1 1.375p Rpar=62.5G noiseless
D1 N005 5 Y
D6 5 N005 Y
C1 2 1 4.125p noiseless
G1 0 M 3 0 1m
G2 0 M 4 0 1m
R3 M 0 1K noiseless
S1 N005 M 4 3 UVLO
D3 N005 3 X
D4 4 N005 X
D2 3 4 IQ
C7 1 4 1.375p Rpar=62.5G noiseless
C8 3 2 1.375p Rpar=62.5G noiseless
C9 2 4 1.375p Rpar=62.5G noiseless
I1 1 4 110p load
I2 2 4 110p load
B1 N004 0 I=2m*dnlim(uplim(V(2),V(3)-0.5,.1), V(4)+3.5, .1)+100n*V(2)
B2 0 N004 I=2m*dnlim(uplim(V(1),V(3)-0.5,.1), V(4)+3.5, .1)+100n*V(1)
A2 0 N006 M M M M N005 M OTA g=130u Isrc=180u en=16n enk=100 Vlow=-1e308 Vhigh=1e308 Cout= 1.4p Isink=-120u asym
C5 N004 0 5p Rpar=1K noiseless
C10 N006 0 5p Rpar=1K noiseless
L1 N004 N006 5µ
.model X D(Ron=10K Roff=100G Vfwd=-1.25 epsilon=.1 noiseless)
.model Y D(Ron=500 Roff=1T Vfwd=2.86 epsilon=.1 noiseless)
.model N VDMOS(Vto=-250m Kp=5m Ksubthres=.2 noiseless)
.model P VDMOS(Vto=250m Kp=5m pchan Ksubthres=.2 noiseless)
.model UVLO SW(Ron=1K Roff=3G Vt=-3.75 Vh=.25 noiseless)
.model IQ D(Ron=2K Vfwd=2 epsilon=1 Ilimit=4.7m noiseless)
.ends AD746
*
.subckt AD795 1 2 3 4 5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=.6f ink=250 incm=.06f incmk=250
M1 3 N004 5 5 N temp=27
M2 4 N004 5 5 P temp=27
C3 3 5 2p
C4 5 4 2p
B1 0 N003 I=2m*dnlim(uplim(V(1),V(3)-.15,.1), V(4)+4, .1)+100n*V(1)
B2 N003 0 I=2m*dnlim(uplim(V(2),V(3)-.15,.1), V(4)+4, .1)+100n*V(2)
C6 3 1 .55p Rpar=400T noiseless
C7 1 4 .55p noiseless Rpar=400T
C8 2 4 .55p Rpar=400T noiseless
C9 3 2 .55p Rpar=400T noiseless
A2 0 N006 M M M M N004 M OTA g=36u Isrc=8u Isink=-5u en=9n enk=200 Vlow=-1e308 Vhigh=1e308 Cout= 4.3p asym
C10 N003 0 22p Rpar=1K noiseless
D1 N004 5 Y
D6 5 N004 Y
C1 2 1 1.45p Rpar=1.01T noiseless
G1 0 M 3 0 1m
G2 0 M 4 0 1m
R3 M 0 1K noiseless
S1 N004 M 4 3 UVLO
D3 N004 3 X
D4 4 N004 X
L1 N003 N005 22µ
L2 N005 N006 22µ
C2 N006 0 22p Rpar=1K noiseless
C5 N005 0 44p
D2 3 4 IQ
.model X D(Ron=1K Roff=100G Vfwd=-2.5 epsilon=.1 noiseless)
.model Y D(Ron=500 Roff=1T Vfwd=2.2 epsilon=.1 noiseless)
.model N VDMOS(Vto=-250m Kp=5m Ksubthres=.2 noiseless)
.model P VDMOS(Vto=250m Kp=5m pchan Ksubthres=.2 noiseless)
.model UVLO SW(Ron=1K Roff=100G Vt=-3.75 Vh=.25 noiseless)
.model IQ D(Ron=2K Vfwd=2 epsilon=1 Ilimit=1m noiseless)
.ends AD795
*
.subckt AD820 1 2 3 4 5
C1 N006 X {Cf}
A1 N005 0 M M M M X M OTA g={Ga} Iout={Islew} en=13n enk=20 Vhigh=1e308 Vlow=-1e308
D21 X 3 ESD
D22 4 X ESD
D5 N006 3 X1
D6 4 N006 X2
C2 3 N006 1p
C3 N006 4 1p
G2 0 M 3 0 500µ
R4 M 0 1K noiseless
G3 0 M 4 0 500µ
S1 X M 4 3 SD
A2 2 1 0 0 0 0 0 0 OTA g=0 in=.8f ink=1 incm=.08f incmk=1
I1 1 4 2p load
I2 2 4 2p load
C11 3 1 .7p Rpar=40T noiseless
C5 1 4 .7p Rpar=40T noiseless
C10 2 4 .7p Rpar=40T noiseless
C12 3 2 .7p Rpar=40T noiseless
B3 0 N004 I=2m*dnlim(uplim(V(1),V(3)-1,.1), V(4)+-.2, .1)+100n*V(1)
B4 N004 0 I=2m*dnlim(uplim(V(2),V(3)-1,.1), V(4)+-.2, .1)+100n*V(2)
C4 N004 0 35p Rpar=1K noiseless
D1 3 4 IQ
L1 N004 N005 35µ
C6 N005 0 35p Rpar=1K noiseless
C7 3 5 1p
C8 5 4 1p
R5 2 1 13.35T noiseless
B1 3 N006 I=if(V(m,x)>=0, V(m,x)*(Gb+Gbx*V(m,x)),0)
B2 N006 4 I=if(V(x,m)>0, V(x,m)*(Gb+Gbx*V(x,m)),0)
D2 N006 N007 20Ohm
D3 5 N007 45mA
C9 3 N007 1p
C13 N007 4 1p
.param Cf = 1p
.param Ro = 1Meg
.param Avol = 60K
.param RL = 2K
.param AVmid = 200
.param FmidA = 10K
.param Zomid = .3
.param FmidZ = 10K
.param Iout = 25m
.param Vslew = 4Meg
.param Vmin = 2.5
.param Roe = 1/(1/RL+1/Ro)
.param Gb = ((FmidZ/FmidA)*(Roe/(AVmid*Zomid))-1)/Roe
.param Ga = 2*pi*FmidZ*Cf/(Zomid*gb)
.param RH = Avol/(Ga*Gb*Roe)
.param Islew = Vslew*Cf*(1+1/(Roe*Gb))
.param Gbx = 50*Gb
.model ESD D(Ron=10 Roff=1T Vfwd=0 epsilon=1 noiseless)
.model X1 D(Ron=1m Roff={2*Ro} Vfwd=-3m epsilon=10m noiseless)
.model X2 D(Ron=1m Roff={2*Ro} Vfwd=-6m epsilon=10m noiseless)
.model SD SW(Ron=10m Roff={RH} Vt={-Vmin-100m} Vh=-100m noiseless)
.model 20Ohm D(Ron=10 Roff=30 epsilon=10m noiseless)
.model 45mA D(Ron=10 Vrev=0 Ilimit=45m revIlimit=45m)
.model IQ D(Ron=2K Vfwd=2 epsilon=1 Ilimit=.7m noiseless)
.ends AD820
*
*AD8682 Macro-model
*Revision History:
*Rev.1 Nov 2016-ZZ
*Copyright 2016 by Analog Devices
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
*for License Statement. Use of this model indicates your acceptance
*of the terms and provisions in the License Staement.
*
*Tested on MultSIm, SiMetrix(NGSpice), PSpice
*
*Not modeled: Distortion, PSRR, Overload Recovery,
* Shutdown Turn On/Turn Off time
*
*Parameters modeled include:
* Vos, Ibias, Input CM limits and Typ output voltge swing over full supply range,
* Open Loop Gain & Phase, Slew Rate, Output current limits, Voltage & Current Noise over temp,
* Capacitive load drive, Quiescent and dynamic supply currents,
* Shut Down pin functionality where applicable,
* Single supply & offset supply functionality.
*
*Node Assignments
* Non-Inverting Input
* | Inverting Input
* | | Positive supply
* | | | Negative supply
* | | | | Output
* | | | | |
.Subckt AD8682 100 101 102 103 104
*
***Power Supplies***
Rz1 102 1020 Rideal 1e-6
Rz2 103 1030 Rideal 1e-6
Ibias 1020 1030 dc 0.44e-3
DzPS 98 1020 diode
Iquies 1020 98 dc 3.96e-3
S1 98 1030 106 113 Switch
R1 1020 99 Rideal 1e7
R2 99 1030 Rideal 1e7
e1 111 110 1020 110 1
e2 110 112 110 1030 1
e3 110 0 99 0 1
*
*
***Inputs***
S2 1 100 106 113 Switch
S3 9 101 106 113 Switch
VOS 1 2 dc 2.5e-3
IbiasP 110 2 dc 2e-12
IbiasN 110 9 dc 2e-12
RinCMP 110 2 Rideal 2000e6
RinCMN 9 110 Rideal 2000e6
CinCMP 110 2 2.2e-12
CinCMN 9 110 2.2e-12
IOS 9 2 1e-15
RinDiff 9 2 Rideal 10000e3
CinDiff 9 2 0.8e-12
*
*
***Non-Inverting Input with Clamp***
g1 3 110 110 2 0.001
RInP 3 110 Rideal 1e3
RX1 40 3 Rideal 0.001
DInP 40 41 diode
DInN 42 40 diode
VinP 111 41 dc 0.46
VinN 42 112 dc 4.46
*
*
***Vnoise***
hVn 6 5 Vmeas1 707.10678
Vmeas1 20 110 DC 0
Vvn 21 110 dc 0.65
Dvn 21 20 DVnoisy
hVn1 6 7 Vmeas2 707.10678
Vmeas2 22 110 dc 0
Vvn1 23 110 dc 0.65
Dvn1 23 22 DVnoisy
*
*
***Inoise***
FnIN 9 110 Vmeas3 0.7071068
Vmeas3 51 110 dc 0
VnIN 50 110 dc 0.65
DnIN 50 51 DINnoisy
FnIN1 110 9 Vmeas4 0.7071068
Vmeas4 53 110 dc 0
VnIN1 52 110 dc 0.65
DnIN1 52 53 DINnoisy
*
FnIP 2 110 Vmeas5 0.7071068
Vmeas5 31 110 dc 0
VnIP 30 110 dc 0.65
DnIP 30 31 DIPnoisy
FnIP1 110 2 Vmeas6 0.7071068
Vmeas6 33 110 dc 0
VnIP1 32 110 dc 0.65
DnIP1 32 33 DIPnoisy
*
*
***CMRR***
RcmrrP 3 10 Rideal 1e12
RcmrrN 10 9 Rideal 1e12
g10 11 110 10 110 -6.325e-9
Lcmrr 11 12 15.9e-3
Rcmrr 12 110 Rideal 1e3
e4 5 3 11 110 1
*
*
***Power Down***
VPD 111 80 dc 2
VPD1 81 0 dc 1.5
RPD 111 106 Rideal 1e6
ePD 80 113 82 0 1
RDP1 82 0 Rideal 1e3
CPD 82 0 1e-10
S5 81 82 83 113 Switch
CDP1 83 0 1e-12
RPD2 106 83 1e6
*
*
***Feedback Pin***
*RF 105 104 Rideal 0.001
*
*
***VFB Stage***
g200 200 110 7 9 1
R200 200 110 Rideal 250
DzSlewP 201 200 DzSlewP
DzSlewN 201 110 DzSlewN
*
*
***Dominant Pole at 0.08 Hz***
g210 210 110 200 110 0.0636e-6
R210 210 110 Rideal 1989.43e6
C210 210 110 1e-012
*
*
***Output Voltage Clamp-1***
RX2 60 210 Rideal 0.001
DzVoutP 61 60 DzVoutP
DzVoutN 60 62 DzVoutN
DVoutP 61 63 diode
DVoutN 64 62 diode
VoutP 65 63 dc 6.095
VoutN 64 66 dc 6.095
e60 65 110 111 110 1
e61 66 110 112 110 1
*
*
***Pole at 12MHz***
g220 220 110 210 110 0.001
R220 220 110 Rideal 1000
C220 220 110 13.2629e-12
*
***Pole at 12MHz***
g230 230 110 220 110 0.001
R230 230 110 Rideal 1000
C230 230 110 13.2629e-12
*
***Pole at 12MHz***
g240 240 110 230 110 0.001
R240 240 110 Rideal 1000
C240 240 110 13.2629e-12
*
***Pole at 50MHz***
g245 245 110 240 110 0.001
R245 245 110 Rideal 1000
C245 245 110 3.1831e-12
*
***Pole at 50MHz***
g250 250 110 245 110 0.001
R250 250 110 Rideal 1000
C250 250 110 3.1831e-12
*
***Pole at 50MHz***
g255 255 110 250 110 0.001
R255 255 110 Rideal 1000
C255 255 110 3.1831e-12
*
***Pole at 50MHz***
g260 260 110 255 110 0.001
R260 260 110 Rideal 1000
C260 260 110 3.1831e-12
*
***Pole at 50MHz***
g265 265 110 260 110 0.001
R265 265 110 Rideal 1000
C265 265 110 3.1831e-12
*
***Buffer***
g270 270 110 265 110 0.001
R270 270 110 Rideal 1000
*
***Buffer***
e280 280 110 270 110 1
R280 280 285 Rideal 10
*
***Peak: f=50MHz, Zeta=0.7, Gain=0.2dB***
e290 290 110 285 110 1
R290 290 292 Rideal 10
L290 290 291 22.736e-9
C290 291 292 445.633e-12
R291 292 110 Rideal 429.314
e295 295 110 292 110 1.0233
*
*
***Output Stage***
g300 300 110 295 110 0.001
R300 300 110 Rideal 1000
e301 301 110 300 110 1
Rout 302 303 Rideal .3
Lout 303 310 1e-9
Cout 310 110 1e-12
*
*
***Output Current Limit***
H1 301 304 Vsense1 100
Vsense1 301 302 dc 0
VIoutP 305 304 dc -0.364
VIoutN 304 306 dc 0.136
DIoutP 307 305 diode
DIoutN 306 307 diode
Rx3 307 300 Rideal 0.001
*
*
***Output Clamp-2***
VoutP1 111 73 dc 1.785
VoutN1 74 112 dc 1.785
DVoutP1 75 73 diode
DVoutN1 74 75 diode
RX4 75 310 Rideal 0.001
*
*
***Supply Currents***
FIoVcc 314 110 Vmeas8 1
Vmeas8 310 311 dc 0
R314 110 314 Rideal 1e9
DzOVcc 110 314 diode
DOVcc 102 314 diode
RX5 311 312 Rideal 0.001
FIoVee 315 110 Vmeas9 1
Vmeas9 312 313 dc 0
R315 315 110 Rideal 1e9
DzOVee 315 110 diode
DOVee 315 103 diode
*
*
***Output Switch***
S4 104 313 106 113 Switch
*
*
*** Common Models ***
.model diode d(bv=100)
.model Switch vswitch(Von=1.505,Voff=1.495,ron=0.001,roff=1e6)
.model DzVoutP D(BV=4.3)
.model DzVoutN D(BV=4.3)
.model DzSlewP D(BV=142.026)
.model DzSlewN D(BV=142.026)
.model DVnoisy D(IS=4.90e-14 KF=3.04e-18)
.model DINnoisy D(IS=3.81e-21 KF=0.00e0)
.model DIPnoisy D(IS=3.81e-21 KF=0.00e0)
.model Rideal res(T_ABS=-273)
*
.ends
*AD8684 Macro-model
*Function:Amplifier
*
*Revision History:
*Rev.1 Nov 2016-ZZ
*Copyright 2016 by Analog Devices
*
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
*for License Statement. Use of this model indicates your acceptance
*of the terms and provisions in the License Staement.
*
*Tested on MultSIm, SiMetrix(NGSpice), PSpice
*
*Not modeled: Distortion, PSRR, Overload Recovery,
* Shutdown Turn On/Turn Off time
*
*Parameters modeled include:
* Vos, Ibias, Input CM limits and Typ output voltge swing over full supply range,
* Open Loop Gain & Phase, Slew Rate, Output current limits, Voltage & Current Noise over temp,
* Quiescent and dynamic supply currents,
* Single supply & offset supply functionality.
*
*Node Assignments
* Non-Inverting Input
* | Inverting Input
* | | Positive supply
* | | | Negative supply
* | | | | Output
* | | | | |
.Subckt AD8684 100 101 102 103 104
*#ASSOC Category="Op-amps" symbol=opamp
*
***Power Supplies***
Rz1 102 1020 Rideal 1e-6
Rz2 103 1030 Rideal 1e-6
Ibias 1020 1030 dc 0.44e-3
DzPS 98 1020 diode
Iquies 1020 98 dc 3.96e-3
S1 98 1030 106 113 Switch
R1 1020 99 Rideal 1e7
R2 99 1030 Rideal 1e7
e1 111 110 1020 110 1
e2 110 112 110 1030 1
e3 110 0 99 0 1
*
*
***Inputs***
S2 1 100 106 113 Switch
S3 9 101 106 113 Switch
VOS 1 2 dc 3.5e-3
IbiasP 110 2 dc 5e-12
IbiasN 110 9 dc 5e-12
RinCMP 110 2 Rideal 2000e6
RinCMN 9 110 Rideal 2000e6
CinCMP 110 2 2.2e-12
CinCMN 9 110 2.2e-12
IOS 9 2 10e-15
RinDiff 9 2 Rideal 10000e3
CinDiff 9 2 0.8e-12
*
*
***Non-Inverting Input with Clamp***
g1 3 110 110 2 0.001
RInP 3 110 Rideal 1e3
RX1 40 3 Rideal 0.001
DInP 40 41 diode
DInN 42 40 diode
VinP 111 41 dc 0.46
VinN 42 112 dc 4.46
*
*
***Vnoise***
hVn 6 5 Vmeas1 707.10678
Vmeas1 20 110 DC 0
Vvn 21 110 dc 0.65
Dvn 21 20 DVnoisy
hVn1 6 7 Vmeas2 707.10678
Vmeas2 22 110 dc 0
Vvn1 23 110 dc 0.65
Dvn1 23 22 DVnoisy
*
*
***Inoise***
FnIN 9 110 Vmeas3 0.7071068
Vmeas3 51 110 dc 0
VnIN 50 110 dc 0.65
DnIN 50 51 DINnoisy
FnIN1 110 9 Vmeas4 0.7071068
Vmeas4 53 110 dc 0
VnIN1 52 110 dc 0.65
DnIN1 52 53 DINnoisy
*
FnIP 2 110 Vmeas5 0.7071068
Vmeas5 31 110 dc 0
VnIP 30 110 dc 0.65
DnIP 30 31 DIPnoisy
FnIP1 110 2 Vmeas6 0.7071068
Vmeas6 33 110 dc 0
VnIP1 32 110 dc 0.65
DnIP1 32 33 DIPnoisy
*
*
***CMRR***
RcmrrP 3 10 Rideal 1e12
RcmrrN 10 9 Rideal 1e12
g10 11 110 10 110 -6.325e-9
Lcmrr 11 12 22.59e-3
Rcmrr 12 110 Rideal 5e3
e4 5 3 11 110 1
*
*
***Power Down***
VPD 111 80 dc 2
VPD1 81 0 dc 1.5
RPD 111 106 Rideal 1e6
ePD 80 113 82 0 1
RDP1 82 0 Rideal 1e3
CPD 82 0 1e-10
S5 81 82 83 113 Switch
CDP1 83 0 1e-12
RPD2 106 83 1e6
*
*
***Feedback Pin***
*RF 105 104 Rideal 0.001
*
*
***VFB Stage***
g200 200 110 7 9 1
R200 200 110 Rideal 250
DzSlewP 201 200 DzSlewP
DzSlewN 201 110 DzSlewN
*
*
***Dominant Pole at 0.08 Hz***
g210 210 110 200 110 0.0636e-6
R210 210 110 Rideal 1989.43e6
C210 210 110 1e-012
*
*
***Output Voltage Clamp-1***
RX2 60 210 Rideal 0.001
DzVoutP 61 60 DzVoutP
DzVoutN 60 62 DzVoutN
DVoutP 61 63 diode
DVoutN 64 62 diode
VoutP 65 63 dc 6.095
VoutN 64 66 dc 6.095
e60 65 110 111 110 1
e61 66 110 112 110 1
*
*
***Pole at 12MHz***
g220 220 110 210 110 0.001
R220 220 110 Rideal 1000
C220 220 110 13.2629e-12
*
***Pole at 12MHz***
g230 230 110 220 110 0.001
R230 230 110 Rideal 1000
C230 230 110 13.2629e-12
*
***Pole at 12MHz***
g240 240 110 230 110 0.001
R240 240 110 Rideal 1000
C240 240 110 13.2629e-12
*
***Pole at 50MHz***
g245 245 110 240 110 0.001
R245 245 110 Rideal 1000
C245 245 110 3.1831e-12
*
***Pole at 50MHz***
g250 250 110 245 110 0.001
R250 250 110 Rideal 1000
C250 250 110 3.1831e-12
*
***Pole at 50MHz***
g255 255 110 250 110 0.001
R255 255 110 Rideal 1000
C255 255 110 3.1831e-12
*
***Pole at 50MHz***
g260 260 110 255 110 0.001
R260 260 110 Rideal 1000
C260 260 110 3.1831e-12
*
***Pole at 50MHz***
g265 265 110 260 110 0.001
R265 265 110 Rideal 1000
C265 265 110 3.1831e-12
*
***Buffer***
g270 270 110 265 110 0.001
R270 270 110 Rideal 1000
*
***Buffer***
e280 280 110 270 110 1
R280 280 285 Rideal 10
*
***Peak: f=50MHz, Zeta=0.7, Gain=0.2dB***
e290 290 110 285 110 1
R290 290 292 Rideal 10
L290 290 291 22.736e-9
C290 291 292 445.633e-12
R291 292 110 Rideal 429.314
e295 295 110 292 110 1.0233
*
*
***Output Stage***
g300 300 110 295 110 0.001
R300 300 110 Rideal 1000
e301 301 110 300 110 1
Rout 302 303 Rideal .3
Lout 303 310 1e-9
Cout 310 110 1e-12
*
*
***Output Current Limit***
H1 301 304 Vsense1 100
Vsense1 301 302 dc 0
VIoutP 305 304 dc -0.364
VIoutN 304 306 dc 0.136
DIoutP 307 305 diode
DIoutN 306 307 diode
Rx3 307 300 Rideal 0.001
*
*
***Output Clamp-2***
VoutP1 111 73 dc 1.785
VoutN1 74 112 dc 1.785
DVoutP1 75 73 diode
DVoutN1 74 75 diode
RX4 75 310 Rideal 0.001
*
*
***Supply Currents***
FIoVcc 314 110 Vmeas8 1
Vmeas8 310 311 dc 0
R314 110 314 Rideal 1e9
DzOVcc 110 314 diode
DOVcc 102 314 diode
RX5 311 312 Rideal 0.001
FIoVee 315 110 Vmeas9 1
Vmeas9 312 313 dc 0
R315 315 110 Rideal 1e9
DzOVee 315 110 diode
DOVee 315 103 diode
*
*
***Output Switch***
S4 104 313 106 113 Switch
*
*
*** Common Models ***
.model diode d(bv=100)
.model Switch vswitch(Von=1.505,Voff=1.495,ron=0.001,roff=1e6)
.model DzVoutP D(BV=4.3)
.model DzVoutN D(BV=4.3)
.model DzSlewP D(BV=142.026)
.model DzSlewN D(BV=142.026)
.model DVnoisy D(IS=4.90e-14 KF=3.04e-18)
.model DINnoisy D(IS=3.81e-21 KF=0.00e0)
.model DIPnoisy D(IS=3.81e-21 KF=0.00e0)
.model Rideal res(T_ABS=-273)
*
.ends AD8684
* ADA4091 SPICE Macro-model
* Developed by: HH / AD-SJ
* Revision History: 08/10/2012 - Updated to new header style
* 05/14/2014 - ported to Simplis (JSW)
* 0.0 (04/2009)
* Copyright 2008, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT ADA4091 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
I1 99 7 8.00E-06
Q1 6 4 7A QP
Q2 5 3 7B QP
RE1 7A 7 7.774E+02
RE2 7B 7 7.774E+02
D1 3 99 DX
D2 4 99 DX
D3 50 3 DX
D4 50 4 DX
D5 3 4 DX
D6 4 3 DX
R1 3 8 5E+03
R2 4 2 5E+03
R3 5 50 7.500E4;
R4 6 50 7.500E4;
Cph 5 5A 0.235E-12
Rph 5A 6 300
EOS 8 1 POLY(4) (73,98) (22,98) (81,98) (83,98) -400E-9 1 1 1 1
IOS 3 4 -50E-12
CDiff 1 2 2.5E-12
Cin1 1 50 2E-12
Cin2 2 50 2E-12
*
* INPUT PROTECTION NETWORK
*
X_in1 1 50 Diac1
X_in2 2 50 Diac1
X_in3 1 99 Diac1
X_in4 2 99 Diac1
*
*
RS1 99 39 400.0E3
RS2 39 50 400.0E3
EREF 98 0 (39,0) 1
*
* 1ST GAIN STAGE
*
G1 9 98 (6,5) 1.0E-06
R7 9 98 1E6
*
* 2ND GAIN STAGE AND DOMINANT POLE
*
R8 12 98 1.094E+08
G2 12 98 (98,9) 3.881E-06
D7 12 13 DX
D8 14 12 DX
V1 13 98 +0.2; source
V2 14 98 -0.2; sink
*
* Provision for second pole
*
G3 18 98 (98,12) 1E-05
R11 18 98 1E5
*
* CMRR=90dB, Pole at 1100 Hz
*
ECM 21 98 POLY(2) (1,98) (2,98) 0 1.318E-01 1.318E-01
R10 21 22 1.326E+05
R20 22 98 1.592E+01
C10 21 22 1E-9
*
* PSRR=85dB, POLE AT 300 Hz
*
EPSY 72 98 POLY(1) (99,50) +0.1E-1 1.770E+01
RPS1 72 73 7.958E+02
RPS2 73 98 3.183E-03
CPS1 72 73 1.00E-06
*
* VOLTAGE NOISE REFERENCE OF 24nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 96.300E-3
HN 81 98 VN1 2.397E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6551
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* OUTPUT STAGE
*
Q3 451 41 99 POUT
RB1 40 41 1.5E+03
EB1 99 40 POLY(1) (98,18) 6.190E-01 1E-0;
Q4 451 43 50 NOUT
RB2 42 43 2.0E+03
EB2 42 50 POLY(1) (18,98) 6.155E-01 1E-0;
Lout 45 451 10E-10
RZ 45 453 100
CZ 453 12 4.67E-12
*
GSY 99 50 POLY(1) (99 50) 106.2E-6 -0.89E-06
*
* MODELS
*
.MODEL QP PNP(BF=80, IS=1.00E-16, VA=130)
.MODEL POUT PNP (BF=80,IS=2.8E-15,VA=130,IK=6E+00,BR=15,VAR=14.4, RC=30)
.MODEL NOUT NPN (BF=120,IS=3.2E-15,VA=250,IK=11E+00,BR=30, VAR=20.0, RC=7)
.MODEL DW D(IS=1E-18)
.MODEL DX D()
.MODEL DY D(IS=1E-9)
.MODEL DZ D(IS=1E-6)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=8.640E-12)
*
.SUBCKT Diac1 1 2
Done 1 3 DZ42hh
Dtwo 2 3 DZ42hh
.MODEL DZ42hh D(IS=3.3179E-6, N=2.0, RS=1.0000E-3, CJO=10.00E-12, M=.31349, VJ=.3905, ISR=2.9061E-9, BV=42.0, IBV=5.0E-03, TT=300.0E-9)
.ENDS Diac1
*
*
.ENDS ADA4091
*
* ADA4092 SPICE Macro-model
* Developed by: HH / AD-SJ
* Revision History: 08/10/2012 - Updated to new header style
* 05/14/2014 - Ported to Simplis (JSW)
* 0.0 (12/2010)
* Copyright 2010, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT ADA4092 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
Q1 6 4 7A QP
Q2 5 3 7B QP
RE1 7A 7 5.656E+02
RE2 7B 7 5.656E+02
I1 99 7 8.00E-06
D1 3 99 DX
D2 4 99 DX
D3 50 3 DX
D4 50 4 DX
D5 3 4 DX
D6 4 3 DX
R1 3 8 5E+03
R2 4 2 5E+03
R3 5 50 7.500E4;
R4 6 50 7.500E4;
Cph 5 5A 0.23E-12
Rph 5A 6 300
EOS 8 1 POLY(4) (73,98) (22,98) (81,98) (83,98) -1.4E-03 1 1 1 1
IOS 3 4 -2.0E-09
CDiff 1 2 2.5E-12
Cin1 1 50 2E-12
Cin2 2 50 2E-12
*
* INPUT PROTECTION NETWORK
*
X_in1 1 50 Diac1
X_in2 2 50 Diac1
X_in3 1 99 Diac1
X_in4 2 99 Diac1
*
*
RS1 99 39 400.0E3
RS2 39 50 400.0E3
EREF 98 0 (39,0) 1
*
* 1ST GAIN STAGE
*
R7 9 98 3.266E+08
G1 9 98 (6,5) 4.303E-06
D7 9 13 DX
D8 14 9 DX
V1 13 98 0.37; sink
V2 14 98 +0.017; source
*
* 2ND GAIN STAGE AND DOMINANT POLE
*
R8 12 98 1.0E+06
G2 12 98 (98,9) 1.0E-06
*
* Provision for second pole
*
G3 18 98 (98,12) 1E-05
R11 18 98 1E5
*
* CMRR
*
ECM 21 98 POLY(2) (1,98) (2,98) 0 7.813E-02 7.813E-02
R10 21 22 2.487E+04
R20 22 98 1.592E+01
C10 21 22 1E-9
*
* PSRR
*
EPSY 72 98 POLY(1) (99,50) +0.1E-6 1.485E+01
RPS1 72 73 5.305E+02
RPS2 73 98 3.183E-03
CPS1 72 73 1.00E-06
*
* VOLTAGE NOISE REFERENCE OF 30nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 25.5E-3
HN 81 98 VN1 3.0E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6551
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* OUTPUT STAGE
*
Q3 451 41 99 POUT
RB1 40 41 1.5E+03
EB1 99 40 POLY(1) (98,18) 6.190E-01 1E-0;
Q4 451 43 50 NOUT
RB2 42 43 2.0E+03
EB2 42 50 POLY(1) (18,98) 6.155E-01 1E-0;
Lout 45 451 6.2E-12
RZ 451 453 100
CZ 453 9 4.6E-12
*
GSY 99 50 POLY(1) (99 50) 79.9E-6 -1.04E-06
*
* MODELS
*
.MODEL QP PNP(BF=80, IS=1.00E-16, VA=130)
.MODEL POUT PNP (BF=80,IS=2.8E-15,VA=130, BR=3,VAR=15, RC=38);
.MODEL NOUT NPN (BF=120,IS=3.2E-15,VA=250, BR=7, VAR=20, RC=8);
.MODEL DW D(IS=1E-18)
.MODEL DX D()
.MODEL DY D(IS=1E-9)
.MODEL DZ D(IS=1E-6)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=1.15E-12)
*
.SUBCKT Diac1 1 2
Done 1 3 DZ42hh
Dtwo 2 3 DZ42hh
.MODEL DZ42hh D(IS=3.3179E-6, N=2.0, RS=1.0000E-3, CJO=10.00E-12, M=.31349, VJ=.3905, ISR=2.9061E-9, BV=42.0, IBV=5.0E-03, TT=300.0E-9)
.ENDS Diac1
.ENDS ADA4092
*
* ADA4096 SPICE Macro-model
* Developed by: HH / AD-SJ
* Revision History: 08/10/2012 - Updated to new header style
* 0.0 (07/2011)
* Copyright 2011, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT ADA4096 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
I1 99 7 8.00E-06
RE1 7 7A 3.714E+03
RE2 7 7B 3.714E+03
Q1 6 4 7A QP
Q2 5 3 7B QP
D1 3 99 DX
D2 4 99 DX
D3 50 3 DX
D4 50 4 DX
D5 3 4 DX
D6 4 3 DX
R1 202 8 5E-03
R2 204 4 5E-03
R3 5 50 7.500E4;
R4 6 50 7.500E4;
Cph 5 5A 6.3E-13
Rph 5A 6 400
EOS 8 3 POLY(4) (73,98) (22,98) (81,98) (83,98) -250E-06 1 1 1 1
IOS 3 4 -1.0E-09
CDiff 1 2 6.35E-12
Cin1 1 50 0.67E-12
Cin2 2 50 0.67E-12
*
* INPUT PROTECTION NETWORK
*
J1 1 201 202 JXB ;
J2 201 201 202 JXL ;
J3 2 203 204 JXB ;
J4 203 203 204 JXL
*
* 1ST GAIN STAGE
*
G1 9 98 (6,5) 1.0E-06
R7 9 98 1E6
*
* 2ND GAIN STAGE AND DOMINANT POLE
*
G2 12 98 (98,9) 3.375E-06
R8 12 98 3.4E+08
D7 12 13 DX
D8 14 12 DX
V1 13 98 +0.5;
V2 14 98 -0.2;
*
* Provision for second pole
*
G3 18 98 (98,12) 1E-05
R11 18 98 1E5
C11x 18 98 1E-14
*
* CMRR
*
ECM 21 98 POLY(2) (1,98) (2,98) 0 2.635E-01 2.635E-01
R10 21 22 1.326E+05
R20 22 98 7.958E+00
C10 21 22 1E-9
*
* PSRR
*
EPSY 72 98 POLY(1) (99,50) -1.514E+3 5.048E+01
RPS1 72 73 1.592E+03
RPS2 73 98 1.989E-03
CPS1 72 73 1.00E-06
*
* VOLTAGE NOISE REFERENCE
*
VN1 80 98 0
RN1 80 98 96.300E-3
HN 81 98 VN1 2.397E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER
*
DFN 82 98 DNOISE 1000
IFN 98 82 DC 1E-03
DFN2 182 98 DY
IFN2 98 182 DC 1E-06
GFN 83 98 POLY(1) (182,82) 1.00E-13 1.00E-01
RFN 83 98 1
*
* Current Noise
D60 60 98 DN1 1000
I60 98 60 1E-03
D61 61 98 DN4
I61 98 61 1E-06
G60 1 50 61 60 1.23E-05
G61 2 50 61 60 1.33E-05
*
RS1 99 39 400.0E3
RS2 39 50 400.0E3
EREF 98 0 (39,0) 1
*
GSY 99 50 POLY(1) (99 50) -23.8E-6 -1.109E-06
*
* OUTPUT STAGE
*
Q3 451 41 99 POUT
RB1 40 41 4.37E+03
EB1 99 40 POLY(1) (98,18) 6.218E-01 1E-0;
Q4 451 43 50 NOUT
RB2 42 43 10E+03
EB2 42 50 POLY(1) (18,98) 6.170E-01 1E-0;
Lout 45 451 10E-10
EZ 453 98 (45 98) 1
CZ 453 12 4.94E-12
R99T 201 202 450k
*
* MODELS
*
.MODEL QP PNP(BF=300, IS=1.00E-16, VA=130)
.MODEL POUT PNP (BF=80,IS=2.8E-15,VA=130,BR=4.3,VAR=20, RC=75);
.MODEL NOUT NPN (BF=120,IS=3.2E-15,VA=250,BR=9.5, VAR=18, RC=42);
.MODEL DN1 D IS=1E-16
.MODEL DN4 D IS=1E-16 AF=1 KF=4.35E-17
.MODEL DW D(IS=1E-18)
.MODEL DX D(IS=1E-16)
.MODEL DY D(IS=1E-16,RS=0.1)
.MODEL DZ D(IS=1E-6)
.MODEL DNOISE D(IS=1E-16,RS=0,KF=2.6E-13)
.MODEL JXL PJF(BETA=4E-05 VTO=-2.0 IS=1E-18 LAMBDA=0.008 RD=1E-1
+ RS=5E1 CGD=1E-12 CGS=1E-12)
.MODEL JXB PJF(BETA=10E-05 VTO=-1.6 IS=1E-19 LAMBDA=0.005 RD=1E-1 RS=1.41E3)
.ENDS ADA4096
*
*$
*ADA4610 Macro-model
*Function:Amplifier
*
*Revision History:
*Rev.2.1 Feb 2016-ZZ
*Copyright 2016 by Analog Devices
*
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
*for License Statement. Use of this model indicates your acceptance
*of the terms and provisions in the License Staement.
*
*Tested on MultSIm, SiMetrix(NGSpice), PSpice
*
*Not modeled: Distortion, PSRR, Overload Recovery,
* Shutdown Turn On/Turn Off time
*
*Parameters modeled include:
* Vos, Ibias, Input CM limits and Typ output voltge swing over full supply range,
* Open Loop Gain & Phase, Slew Rate, Output current limits, Voltage & Current Noise over temp,
* Capacitive load drive, Quiescent and dynamic supply currents,
* Shut Down pin functionality where applicable,
* Single supply & offset supply functionality.
*
*Node Assignments
* Non-Inverting Input
* | Inverting Input
* | | Positive supply
* | | | Negative supply
* | | | | Output
* | | | | |
.Subckt ADA4610 100 101 102 103 104
*#ASSOC Category="Op-Amps" symbol=opamp
***Power Supplies***
Rz1 102 1020 Rideal 1e-6
Rz2 103 1030 Rideal 1e-6
Ibias 1020 1030 dc 0.33e-3
DzPS 98 1020 diode
Iquies 1020 98 dc 2.97e-3
S1 98 1030 106 113 Switch
R1 1020 99 Rideal 1e7
R2 99 1030 Rideal 1e7
e1 111 110 1020 110 1
e2 110 112 110 1030 1
e3 110 0 99 0 1
*
*
***Inputs***
S2 1 100 106 113 Switch
S3 9 101 106 113 Switch
VOS 1 2 dc 0.2e-6
IbiasP 110 2 dc 5e-12
IbiasN 110 9 dc 5e-12
RinCMP 110 2 Rideal 20000000000000e6
RinCMN 9 110 Rideal 20000000000000e6
CinCMP 110 2 5.7e-12
CinCMN 9 110 5.7e-12
IOS 9 2 2e-12
RinDiff 9 2 Rideal 20000000000000e3
CinDiff 9 2 2.2e-12
*
*
***Non-Inverting Input with Clamp***
g1 3 110 110 2 0.001
RInP 3 110 Rideal 1e3
RX1 40 3 Rideal 0.001
DInP 40 41 diode
DInN 42 40 diode
VinP 111 41 dc 2.96
VinN 42 112 dc 2.96
*
*
***Vnoise***
hVn 6 5 Vmeas1 707.10678
Vmeas1 20 110 DC 0
Vvn 21 110 dc 0.65
Dvn 21 20 DVnoisy
hVn1 6 7 Vmeas2 707.10678
Vmeas2 22 110 dc 0
Vvn1 23 110 dc 0.65
Dvn1 23 22 DVnoisy
*
*
***Inoise***
FnIN 9 110 Vmeas3 0.7071068
Vmeas3 51 110 dc 0
VnIN 50 110 dc 0.65
DnIN 50 51 DINnoisy
FnIN1 110 9 Vmeas4 0.7071068
Vmeas4 53 110 dc 0
VnIN1 52 110 dc 0.65
DnIN1 52 53 DINnoisy
*
FnIP 2 110 Vmeas5 0.7071068
Vmeas5 31 110 dc 0
VnIP 30 110 dc 0.65
DnIP 30 31 DIPnoisy
FnIP1 110 2 Vmeas6 0.7071068
Vmeas6 33 110 dc 0
VnIP1 32 110 dc 0.65
DnIP1 32 33 DIPnoisy
*
*
***CMRR***
RcmrrP 3 10 Rideal 1e12
RcmrrN 10 9 Rideal 1e12
g10 11 110 10 110 -1e-10
Lcmrr 11 12 1e-12
Rcmrr 12 110 Rideal 1e3
e4 5 3 11 110 1
*
*
***Power Down***
VPD 111 80 dc 2
VPD1 81 0 dc 1.5
RPD 111 106 Rideal 0.286e6
ePD 80 113 82 0 1
RDP1 82 0 Rideal 1e3
CPD 82 0 1e-10
S5 81 82 83 113 Switch
CDP1 83 0 1e-12
RPD2 106 83 1e6
*
*
***Feedback Pin***
*RF 105 104 Rideal 0.001
*
*
***VFB Stage***
g200 200 110 7 9 1
R200 200 110 Rideal 250
DzSlewP 201 200 DzSlewP
DzSlewN 201 110 DzSlewN
*
*
***Dominant Pole at 350 Hz***
g210 210 110 200 110 0.3502e-6
R210 210 110 Rideal 454.73e6
C210 210 110 1e-012
*
*
***Output Voltage Clamp-1***
RX2 60 210 Rideal 0.001
DzVoutP 61 60 DzVoutP
DzVoutN 60 62 DzVoutN
DVoutP 61 63 diode
DVoutN 64 62 diode
VoutP 65 63 dc 5.709
VoutN 64 66 dc 5.428
e60 65 110 111 110 1.34
e61 66 110 112 110 1.34
*
*
***Pole-Zero at 84KHz, 180KHz***
g220 220 110 210 110 0.001
R220 220 110 Rideal 1000
R221 220 221 Rideal 0.875e3
C220 221 110 1010.5064e-12
*
***Pole at 110MHz***
g230 230 110 220 110 0.001
R230 230 110 Rideal 1000
C230 230 110 1.4469e-12
*
***Buffer***
g240 240 110 230 110 0.001
R240 240 110 Rideal 1000
*
***Buffer***
g245 245 110 240 110 0.001
R245 245 110 Rideal 1000
*
***Buffer***
g250 250 110 245 110 0.001
R250 250 110 Rideal 1000
*
***Buffer***
g255 255 110 250 110 0.001
R255 255 110 Rideal 1000
*
***Buffer***
g260 260 110 255 110 0.001
R260 260 110 Rideal 1000
*
***Buffer***
g265 265 110 260 110 0.001
R265 265 110 Rideal 1000
*
***Buffer***
g270 270 110 265 110 0.001
R270 270 110 Rideal 1000
*
***Notch: f=2.2MHz, Zeta=1.2, Gain=0.8dB***
e280 280 110 270 110 1
R280 280 285 Rideal 10
L280 285 281 3425.757e-9
C280 281 282 1527.698e-12
R281 282 110 Rideal 103.65
*
***Peak: f=0.5MHz, Zeta=3.1, Gain=5.1dB***
e290 290 110 285 110 1
R290 290 292 Rideal 10
L290 290 291 513.402e-9
C290 291 292 197351.907e-12
R291 292 110 Rideal 12.518
e295 295 110 292 110 1.7989
*
*
***Output Stage***
g300 300 110 295 110 0.001
R300 300 110 Rideal 1000
e301 301 110 300 110 1
Rout 302 303 Rideal 163
Lout 303 310 80e-9
Cout 310 110 6e-12
*
*
***Output Current Limit***
H1 301 304 Vsense1 100
Vsense1 301 302 dc 0
VIoutP 305 304 dc 5.736
VIoutN 304 306 dc 5.736
DIoutP 307 305 diode
DIoutN 306 307 diode
Rx3 307 300 Rideal 0.001
*
*
***Output Clamp-2***
VoutP1 111 73 dc 0.785
VoutN1 74 112 dc 0.785
DVoutP1 75 73 diode
DVoutN1 74 75 diode
RX4 75 310 Rideal 0.001
*
*
***Supply Currents***
FIoVcc 314 110 Vmeas8 1
Vmeas8 310 311 dc 0
R314 110 314 Rideal 1e9
DzOVcc 110 314 diode
DOVcc 102 314 diode
RX5 311 312 Rideal 0.001
FIoVee 315 110 Vmeas9 1
Vmeas9 312 313 dc 0
R315 315 110 Rideal 1e9
DzOVee 315 110 diode
DOVee 315 103 diode
*
*
***Output Switch***
S4 104 313 106 113 Switch
*
*
*** Common Models ***
.model diode d(bv=100)
.model Switch vswitch(Von=1.505,Voff=1.495,ron=0.001,roff=1e6)
.model DzVoutP D(BV=4.3)
.model DzVoutN D(BV=4.3)
.model DzSlewP D(BV=174.665)
.model DzSlewN D(BV=174.665)
.model DVnoisy D(IS=2.03e-15 KF=8.16e-18)
.model DINnoisy D(IS=1.45e-22 KF=8.13e-18)
.model DIPnoisy D(IS=1.45e-22 KF=8.13e-18)
.model Rideal res(T_ABS=-273)
*
.ends ADA4610
*
* ADA4622 SPICE Macro-model
* Description: Amplifier
* Generic Desc: 30V, JFET, OP, S SPLY, RRO
* Developed by: DB/ ADSJ
* Revision History:
* 1.0 (11/2015)
* 2.0 (12/2017)
* 12/2017 - corrected pin order to standard by AR / ADGT
* 3.0 (8/2020)
* 8/2020 - added CMRR, PSRR, Input Clamp, Fixed the ff: Vos, Ib, Input Impedance, Short circuit current by AR/ADGT
* Copyright 2015 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
*
* Notes: This model simulates typical values @ Vsy=±15V, T=25°C.
* Ibias and Vos are static and will not vary with Vcm.
* Distortion is not modelled.
* (ada4622 DMod model)
*
* Usage:-
*X1 3 2 7 4 6 ADA4622
* | | | | |
* | | | | Output
* | | | Negative Supply
* | | Positive Supply
* | Inverting Input
* Non-Inverting Input
.SUBCKT ADA4622 3 2 7 4 6
* Input Impedances
GI1 3b 0 VALUE = {IF(V(7,0)>5, 14.600E-012, 4.600E-012)}
GI2 2 0 VALUE = {IF(V(7,0)>5, 11.800E-012, 5.800E-012)}
EOS 3b 3 POLY(4) (14,0) (72,0) (60,0) (63,0) 1E-6 1 1 1 1
R3 3b 2 1.333E+013
R4 3b 0 2.000E+013
R5 2 0 2.000E+013
C1 3b 0 3.600E-012
C2 2 0 3.600E-012
C3 3b 2 4.000E-013
D5a 3b 43x DL
E1a 43x 0 VALUE = {V(7)- 1.2}
D5b 2 43y DL
E1b 43y 0 VALUE = {V(7)- 1.2}
* CMRR
*
ECM 13 0 POLY(2) (3,0) (2,0) 0 10.999E-02 10.999E-02
RCM1 13 14 1.021E+02
RCM2 14 0 10.842E-03
CCM1 13 14 1E-6
*
* PSRR
*
EPSY 71 0 POLY(1) (7,4) -2.4375E-00 14.1250E-02
RPS1 71 72 9.947E+05
RPS2 72 0 1.224E+02
CPS1 71 72 1E-9
* Preconditioning Gain Stage and Sum Node for
* Transconductance Control and Noise Insertion
G1 0 41 POLY(4) 3 2 60 63 14 0 72 0 0.000E+000 2.377E-003 1.947E-003 0.436E-003 0.436E-003
* Limiting Section for Slew-Rate Control
D5 41 43 DL
V1 43 0 1.082E+002
D6 42 41 DL
V2 0 42 8.170E+001
G2 41 0 41 0 1.0E-5
E6 20 0 POLY(1) 41 0 0 1
+0 -6.562164E-006 0 -5.302485E-012
+0 3.817254E-016 0 -1.371241E-021
.MODEL DL D IS=1E-18 EG=0.1 N=0.2
* Second-Order Frequency Shaping
R50 20 21 5
C50 21 0 1.224E-009
R52 21 23 35
C51 23 0 5.350E-011
R54 23 25 245
C52 25 0 7.642E-012
R56 25 27 1715
C53 27 0 1.031E-012
R58 27 40 12005
C54 40 0 1.105E-013
* Primary Gain Block and Dominant Pole/Zero
G3 0 44 POLY(3) 45 6 40 0 0 54 0 -1.033E-003 1E-5 5E-4
G4 44 0 44 0 1.981E-011
C4 44 4 4.348E-013
* Output Stage and Swing Limiting Network
E2 46 0 POLY(1) 7 0 -1.178E+000 1.000E+002
E3 47 0 POLY(1) 4 0 2.801E-001 1.000E+002
D7 44 46 DL
D8 47 44 DL
G7 45 6 45 6 100
E5 55 0 6 0 1.00E+002
C5 55 50 4.348E-013
R7 50 44 1.150E+005
E4 53 0 45 6 2.863E+005
V7 53 56 11.734E+001
D9 56 54 DL
V8 57 53 144.2
D10 54 57 DL
G5 54 0 54 0 9.1E-6
G8 45 7 POLY(2) 7 0 0 44 0 2.500E-002 2.500E-004
G9 45 4 POLY(2) 4 0 0 44 0 2.500E-002 2.500E-004
R12 7 45 4.000E+001
R13 4 45 4.000E+001
G10 58 59 POLY(2) 0 45 44 0 0 2.500E-002 2.500E-004
G11 51 0 51 0 100
G12 52 0 52 0 100
G13 4 7 POLY(2) 51 0 52 0 0 100 100
D11 59 0 DX
D12 51 59 DX
D13 52 58 DX
D14 58 0 DX
R10 58 0 7.00E+003
R11 59 0 7.00E+003
.MODEL DX D IS=1E-14 EG=0.6
* Quiescent Supply Current
GI9 7 4 VALUE = {IF(V(7,0)>5, 7.15E-004, 6.500E-004)}
* Noise Modeling
D60 60 0 DN1 1000
I60 0 60 1E-3
D63 63 0 DN2
I63 0 63 1E-6
.MODEL DN1 D IS=1E-16
.MODEL DN2 D IS=1E-16 AF=1 KF=7.715E-018
.ENDS ADA4622
*
* Copyright (c) 1998-2020 Analog Devices, Inc. All rights reserved.
* BR 06/03/2020
*
.subckt ADA4625-1 1 2 3 4 5
D6 4 1 DX
Cdm 1 2 8.6p Rser=200 noiseless
D9 3 4 Dburn
R10 3 Mid 100Meg noiseless
B1 0 N004 I=10u*dnlim(uplim(V(1),V(3)-3.48,10m), V(4)-.3, .1)+100p*V(1) + 332f
B2 N004 0 I=10u*dnlim(uplim(V(2),V(3)-3.48,10m), V(4)-.3, .1)+100p*V(2)
C1 N004 0 1f Rpar=200K noiseless
C8 3 5 1p Rpar=100Meg noiseless
C9 5 4 1p Rpar=100Meg noiseless
C10 Mid 4 50p Rser=1Meg Rpar=100Meg noiseless
A4 0 N004 0 0 0 0 N007 0 OTA g=1m linear en=3.3n enk=17 vlow=-1e308 vhigh=1e308
D4 4 2 DX
Q1 XDUM N005 3 0 PNPout1 temp=27
Q2 XDUM N009 4 0 NPNout1 temp=27
A1 X3 0 4 4 4 4 N005 4 OTA g=1m asym isource=10u isink=-500u ref=6.8m vlow=0 vhigh=42
D8 N005 4 DoutBias1
D11 3 N009 DoutBias1
A2 X3 0 3 3 3 3 N009 3 OTA g=1m asym isource=500u isink=-10u ref=-6.8m vlow=-42 vhigh=0
C4 X3 0 100f
Q3 5 N006 3 0 PNPout2 temp=27
R5 3 N006 10Meg noiseless
Q4 5 N010 4 0 NPNout2 temp=27
A6 X3 0 4 4 4 4 N006 4 OTA g=1m asym isource=10u isink=-500u ref=6.8m vlow=0 vhigh=42
D12 N006 4 DoutBias1
D13 3 N010 DoutBias1
A7 X3 0 3 3 3 3 N010 3 OTA g=1m asym isource=500u isink=-10u ref=-6.8m vlow=-42 vhigh=0
C14 3 XDUM 5p
C16 N007 0 2p Rpar=1K noiseless
C2 X3 0 3p Rser=20 Rpar=200Meg noiseless
C15 XDUM 4 5p
C6 N006 5 100f Rser=100 noiseless
B3 X3 0 I=dnlim(1m*(V(X3)-.52-97m*V(3,4)),0,100u)
B4 0 X3 I=dnlim(1m*(-2.26-48m*V(3,4)-V(X3)),0,100u)
C7 5 XDUM 1p Rpar=10k noiseless
D2 2 3 DX
D3 1 3 DX
C12 3 2 5.65p Rser=100 noiseless
C19 3 1 5.65p Rser=100 noiseless
C21 2 4 5.65p Rser=100 noiseless
D5 5 3 DESD
D7 4 5 DESD
C20 1 4 5.65p Rser=100 noiseless
C13 5 N010 100f Rser=100 noiseless
R4 N010 4 10Meg noiseless
R6 3 N005 10Meg noiseless
R7 N009 4 10Meg noiseless
CF2 X3 N014 10p Rser=100 noiseless
G3 0 N014 Mid 5 10m
C22 N014 0 1p Rpar=100 noiseless
C18 N005 XDUM 100f
C23 XDUM N009 100f
R12 N005 4 100Meg noiseless
A5 0 2 0 0 0 0 0 0 OTA g=0 in=4.5f
A8 0 1 0 0 0 0 0 0 OTA g=0 in=4.5f
G5 0 N012 N008 0 1m
C24 N012 0 2p Rpar=1k noiseless
G8 0 N008 N007 0 1m
C26 N008 0 2p Rpar=1k noiseless
C27 3 4 20p
A3 XDUM 5 5 5 5 5 XDUM 5 OTA g=12.5m iout=14.6m vlow=-1e308 vhigh=1e308
G4 0 N011 Mid XDUM 10m
C28 X3 N011 13.5p Rser=10 noiseless
R9 N011 0 100 noiseless
G1 0 X3 N012 0 2m
D14 N012 0 DSLW1
B5 0 N004 I=dnlim(V(1,2)-100m,0,10m)*100u*V(1,2)**2- dnlim(V(2,1)-100m,0,10m)*100u*V(2,1)**2
D10 N004 0 DSLW0
S1 N015 0 4 3 SVARSLW
C3 N015 0 1p
D15 N012 N015 DSLW2
.model DX D(IS=1e-16 RS=100 noiseless)
.model DESD D(Ron=100 Roff=1G vfwd=600m epsilon=500m noiseless)
.model DBURN D(Ron=100 Roff=1G vfwd=600m epsilon=600m ilimit=2.908m noiseless)
.model PNPout1 PNP(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f noiseless)
.model NPNout1 NPN(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f noiseless)
.model PNPout2 PNP(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f RC=6 VAF=50 noiseless)
.model NPNout2 NPN(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f RC=6 VAF=50 noiseless)
.model DoutBias1 D(Ron=1k Roff=1G vfwd=600m epsilon=500m ilimit=12u noiseless)
.model DSLW0 D(Ron=100 Roff=200k vfwd=5 epsilon=100m vrev=5 revepsilon=100m noiseless)
.model DSLW1 D(Ron=1 Roff=100k vfwd=550m epsilon=100m vrev=550m revepsilon=100m noiseless)
.model DSLW2 D(Ron=1 Roff=100k vfwd=320m epsilon=100m vrev=320m revepsilon=100m noiseless)
.model SVARSLW SW(Ron=1 Roff=500 vt=-15 vh=-30 noiseless)
.ends ADA4625-1
*
*
*
*
.subckt ADA4625 1 2 3 4 5
D6 4 1 DX
Cdm 1 2 8.6p Rser=200 noiseless
D9 3 4 Dburn
R10 3 Mid 100Meg noiseless
B1 0 N004 I=10u*dnlim(uplim(V(1),V(3)-3.48,10m), V(4)-.3, .1)+100p*V(1) + 332f
B2 N004 0 I=10u*dnlim(uplim(V(2),V(3)-3.48,10m), V(4)-.3, .1)+100p*V(2)
C1 N004 0 1f Rpar=200K noiseless
C8 3 5 1p Rpar=100Meg noiseless
C9 5 4 1p Rpar=100Meg noiseless
C10 Mid 4 50p Rser=1Meg Rpar=100Meg noiseless
A4 0 N004 0 0 0 0 N007 0 OTA g=1m linear en=3.3n enk=17 vlow=-1e308 vhigh=1e308
D4 4 2 DX
Q1 XDUM N005 3 0 PNPout1 temp=27
Q2 XDUM N009 4 0 NPNout1 temp=27
A1 X3 0 4 4 4 4 N005 4 OTA g=1m asym isource=10u isink=-500u ref=6.8m vlow=0 vhigh=42
D8 N005 4 DoutBias1
D11 3 N009 DoutBias1
A2 X3 0 3 3 3 3 N009 3 OTA g=1m asym isource=500u isink=-10u ref=-6.8m vlow=-42 vhigh=0
C4 X3 0 100f
Q3 5 N006 3 0 PNPout2 temp=27
R5 3 N006 10Meg noiseless
Q4 5 N010 4 0 NPNout2 temp=27
A6 X3 0 4 4 4 4 N006 4 OTA g=1m asym isource=10u isink=-500u ref=6.8m vlow=0 vhigh=42
D12 N006 4 DoutBias1
D13 3 N010 DoutBias1
A7 X3 0 3 3 3 3 N010 3 OTA g=1m asym isource=500u isink=-10u ref=-6.8m vlow=-42 vhigh=0
C14 3 XDUM 5p
C16 N007 0 2p Rpar=1K noiseless
C2 X3 0 3p Rser=20 Rpar=200Meg noiseless
C15 XDUM 4 5p
C6 N006 5 100f Rser=100 noiseless
B3 X3 0 I=dnlim(1m*(V(X3)-.52-97m*V(3,4)),0,100u)
B4 0 X3 I=dnlim(1m*(-2.26-48m*V(3,4)-V(X3)),0,100u)
C7 5 XDUM 1p Rpar=10k noiseless
D2 2 3 DX
D3 1 3 DX
C12 3 2 5.65p Rser=100 noiseless
C19 3 1 5.65p Rser=100 noiseless
C21 2 4 5.65p Rser=100 noiseless
D5 5 3 DESD
D7 4 5 DESD
C20 1 4 5.65p Rser=100 noiseless
C13 5 N010 100f Rser=100 noiseless
R4 N010 4 10Meg noiseless
R6 3 N005 10Meg noiseless
R7 N009 4 10Meg noiseless
CF2 X3 N014 10p Rser=100 noiseless
G3 0 N014 Mid 5 10m
C22 N014 0 1p Rpar=100 noiseless
C18 N005 XDUM 100f
C23 XDUM N009 100f
R12 N005 4 100Meg noiseless
A5 0 2 0 0 0 0 0 0 OTA g=0 in=4.5f
A8 0 1 0 0 0 0 0 0 OTA g=0 in=4.5f
G5 0 N012 N008 0 1m
C24 N012 0 2p Rpar=1k noiseless
G8 0 N008 N007 0 1m
C26 N008 0 2p Rpar=1k noiseless
C27 3 4 20p
A3 XDUM 5 5 5 5 5 XDUM 5 OTA g=12.5m iout=14.6m vlow=-1e308 vhigh=1e308
G4 0 N011 Mid XDUM 10m
C28 X3 N011 13.5p Rser=10 noiseless
R9 N011 0 100 noiseless
G1 0 X3 N012 0 2m
D14 N012 0 DSLW1
B5 0 N004 I=dnlim(V(1,2)-100m,0,10m)*100u*V(1,2)**2- dnlim(V(2,1)-100m,0,10m)*100u*V(2,1)**2
D10 N004 0 DSLW0
S1 N015 0 4 3 SVARSLW
C3 N015 0 1p
D15 N012 N015 DSLW2
.model DX D(IS=1e-16 RS=100 noiseless)
.model DESD D(Ron=100 Roff=1G vfwd=600m epsilon=500m noiseless)
.model DBURN D(Ron=100 Roff=1G vfwd=600m epsilon=600m ilimit=2.908m noiseless)
.model PNPout1 PNP(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f noiseless)
.model NPNout1 NPN(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f noiseless)
.model PNPout2 PNP(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f RC=6 VAF=50 noiseless)
.model NPNout2 NPN(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f RC=6 VAF=50 noiseless)
.model DoutBias1 D(Ron=1k Roff=1G vfwd=600m epsilon=500m ilimit=12u noiseless)
.model DSLW0 D(Ron=100 Roff=200k vfwd=5 epsilon=100m vrev=5 revepsilon=100m noiseless)
.model DSLW1 D(Ron=1 Roff=100k vfwd=550m epsilon=100m vrev=550m revepsilon=100m noiseless)
.model DSLW2 D(Ron=1 Roff=100k vfwd=320m epsilon=100m vrev=320m revepsilon=100m noiseless)
.model SVARSLW SW(Ron=1 Roff=500 vt=-15 vh=-30 noiseless)
.ends ADA4625
*
*
*
.subckt ADA4625-2 1 2 3 4 5
D6 4 1 DX
Cdm 1 2 8.6p Rser=200 noiseless
D9 3 4 Dburn
R10 3 Mid 100Meg noiseless
B1 0 N005 I=10u*dnlim(uplim(V(1),V(3)+.3,.1), V(4)-.3, .1)+1n*V(1) + 2.93p
B2 N005 0 I=10u*dnlim(uplim(V(2),V(3)+.31,.1), V(4)-.31, .1)+1n*V(2)
C1 N005 0 1f Rpar=100K noiseless
C8 3 5 1p Rpar=100Meg noiseless
C9 5 4 1p Rpar=100Meg noiseless
C10 Mid 4 50p Rser=1Meg Rpar=100Meg noiseless
A4 0 N005 0 0 0 0 N008 0 OTA g=1m linear en=3.3n enk=17 vlow=-1e308 vhigh=1e308
D4 4 2 DX
Q1 XDUM N006 3 0 PNPout1 temp=27
Q2 XDUM N010 4 0 NPNout1 temp=27
A1 0 N003 4 4 4 4 N006 4 OTA g=1m asym isource=10u isink=-500u ref=6.8m vlow=0 vhigh=42
D8 N006 4 DoutBias1
D11 3 N010 DoutBias1
A2 0 N003 3 3 3 3 N010 3 OTA g=1m asym isource=500u isink=-10u ref=-6.8m vlow=-42 vhigh=0
C4 X3 0 100f
G1 0 N003 0 X3 100m
C3 N003 0 1p Rpar=10 noiseless
G2 0 N003 0 N012 100m
Q3 5 N007 3 0 PNPout2 temp=27
R5 3 N007 10Meg noiseless
Q4 5 N011 4 0 NPNout2 temp=27
A6 0 N003 4 4 4 4 N007 4 OTA g=1m asym isource=10u isink=-500u ref=6.8m vlow=0 vhigh=42
D12 N007 4 DoutBias1
D13 3 N011 DoutBias1
A7 0 N003 3 3 3 3 N011 3 OTA g=1m asym isource=500u isink=-10u ref=-6.8m vlow=-42 vhigh=0
C14 3 XDUM 5p
C16 N008 0 4p Rpar=1K noiseless
C2 X3 0 3p Rser=20 Rpar=100Meg noiseless
C15 XDUM 4 5p
C6 N007 5 100f Rser=100 noiseless
C5 N012 0 5p Rpar=1k Rser=50 noiseless
G6 0 N012 N013 0 1m
B3 X3 0 I=dnlim(1m*(V(X3)-V(3,Mid)-3),0,100u)
B4 0 X3 I=dnlim(1m*(V(4,Mid)-5-V(X3)),0,100u)
C7 5 XDUM 1p Rpar=10k noiseless
D2 2 3 DX
D3 1 3 DX
C12 3 2 5.65p Rser=100 noiseless
C19 3 1 5.65p Rser=100 noiseless
C21 2 4 5.65p Rser=100 noiseless
D5 5 3 DESD
D7 4 5 DESD
C20 1 4 5.65p Rser=100 noiseless
C13 5 N011 100f Rser=100 noiseless
R4 N011 4 10Meg noiseless
R6 3 N006 10Meg noiseless
R7 N010 4 10Meg noiseless
CF2 X3 N017 10p Rser=100 noiseless
G3 0 N017 Mid 5 10m
C22 N017 0 1p Rpar=100 noiseless
C18 N006 XDUM 100f
C23 XDUM N010 100f
R12 N006 4 100Meg noiseless
A5 0 2 0 0 0 0 0 0 OTA g=0 in=4.5f
A8 0 1 0 0 0 0 0 0 OTA g=0 in=4.5f
G5 0 N014 N009 0 1m
C24 N014 0 2p Rpar=1k noiseless
L1 N013 0 227m Rser=142.8m Rpar=1K noiseless
G7 0 N013 Mid XDUM 1m
A9 0 N014 N016 0 0 0 X3 0 OTA g=2m linear vlow=-1e308 vhigh=1e308
I1 0 N016 1µ
S1 N016 0 2 3 SGKILL
S2 N016 0 1 3 SGKILL
C25 N016 0 1p Rpar=1Meg noiseless
G8 0 N009 N008 0 1m
C26 N009 0 5p Rpar=1k noiseless
D10 N014 0 DSLW1
D14 N014 N018 DSLW2
S3 N018 0 4 3 SVARSLW
C17 N018 0 1p
C27 3 4 20p
A3 XDUM 5 5 5 5 5 XDUM 5 OTA g=12.5m iout=14.6m vlow=-1e308 vhigh=1e308
.model DX D(IS=1e-16 RS=100 noiseless)
.model DESD D(Ron=100 Roff=1G vfwd=600m epsilon=500m noiseless)
.model DBURN D(Ron=100 Roff=1G vfwd=600m epsilon=600m ilimit=3.076m noiseless)
.model PNPout1 PNP(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f noiseless)
.model NPNout1 NPN(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f noiseless)
.model PNPout2 PNP(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f RC=6 noiseless)
.model NPNout2 NPN(Is=1e-18 Isc=3e-11 NC=1.7 BF=75 BR=10 CJE=100f RC=6 noiseless)
.model DoutBias1 D(Ron=1k Roff=1G vfwd=600m epsilon=500m ilimit=12u noiseless)
.model SGKILL SW(level=2 Ron=5k Roff=1G vt=-2 vh=-300m noiseless)
.model DSLW1 D(Ron=1 Roff=100k vfwd=538m epsilon=100m vrev=538m revepsilon=100m noiseless)
.model DSLW2 D(Ron=1 Roff=100k vfwd=375m epsilon=100m vrev=375m revepsilon=100m noiseless)
.model SVARSLW SW(Ron=1 Roff=500 vt=-15 vh=-30 noiseless)
.param CL = 1f
.ends ADA4625-2
*
* ADA4627 SPICE Macro-model
* Developed by: HH / ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (07/2009)
* Copyright 2009, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
* CAUTION!! To aid in convergence, most Spice simulators add a
* conductance on every node to insure that no node is floating.
* This is GMIN, and the default value is usually 1E-12. To properly
* simulate the low input bias current and low current noise, the
* Spice simulator options have to be set to the following:
* .OPTIONS GMIN=0.01p
* .OPTIONS ABSTOL=0.01pA
* .OPTIONS ITL1=500
* .OPTIONS ITL2=200
* .OPTIONS ITL4=100
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT ADA4627 1 2 99 50 30
*
* INPUT STAGE
*
Cdiff 1 2 4.7E-12
Cin1 1 50 7.5E-12
Cin2 2 50 7.5E-12
*
R3 5 99 1.478E+03
R4 6 99 1.478E+03
J1 5 2 4 JX
J2 6 7 4 JX
*
I1 4 50 2.70E-03
DI1 4a 4 DX
VI1 4a 50 5.5V
IOS 1 2 0.25E-12
EOS 60 1 POLY(2) (17,24) (73,98) 110E-6 1 1
EN 7 60 42 0 1
*
EREF 98 0 24 0 1
*
* SECOND STAGE
*
R5 9 98 4.097E+05
C3 9 98 3.850E-09
G1 98 9 5 6 7.700E-02
V2 99 8 2.86
V3 10 50 2.41;
D1 9 8 DX
D2 10 9 DX
*
* 2nd POLE
*
R13 18 98 1.000E+03
C9 18 98 1.0E-14
G5 98 18 9 24 1E-3
*
* COMMON-MODE GAIN NETWORK
*
R11 16 17 2.698E-01
R12 17 98 1.326E-04
E3 16 98 POLY(2) 1 98 2 98 0 8.459E-03 8.459E-03
C8 16 17 100E-6
*
* PSRR NETWORK
*
EPSY 98 72 POLY(1) (99,50) 3.350E-03 1.005E-01
CPS3 72 73 1.000E-09
RPS3 72 73 9.947E+05
RPS4 73 98 1.326E+02
*
* VOLTAGE NOISE GENERATOR
*
VN1 41 0 DC 2
DN1 41 42 DEN
DN2 42 43 DEN
VN2 0 43 DC 2
*
* CURRENT NOISE GENERATOR
*
VN3 44 0 DC 2
DN3 44 45 DIN
DN4 45 46 DIN
VN4 0 46 DC 2
*
* CURRENT NOISE GENERATOR
*
VN5 47 0 DC 2
DN5 47 48 DIN
DN6 48 49 DIN
VN6 0 49 DC 2
*
* OUTPUT STAGE
*
R14 24 99 500E3
R15 24 50 500E3
GSY 99 50 POLY(1) (99,50) 4.079E-03 2.985E-06
R16 29 99 100
R17 29 50 100
G6 27 50 18 29 10.0E-3
G7 28 50 29 18 10.0E-3
G8 29 99 POLY(1) 99 18 1E-16 1.00E-2
G9 50 29 POLY(1) 18 50 1E-16 1.00E-2
*
V4 25 29 1.99; Isc high side
V5 29 26 2.4
D3 18 25 DX
D4 26 18 DX
*
D5 99 27 DX
D6 99 28 DX
D7 50 27 DY
D8 50 28 DY
F1 29 0 V4 1
F2 0 29 V5 1
L1 29 30a 1E-15
R24 30a 30 1m
*
* MODELS USED
*
.MODEL JX NJF(BETA=3.400E-03 VTO=-1.500 IS=7E-13 RD=1
+ RS=1 CGD=1.5E-12 CGS=1.5E-12 )
*.MODEL JX PJF(BETA=1.4E-3 VTO=-1.000 IS=20E-12 RD=0
*+ RS=0 CGD=3E-12 CGS=3E-12)
.MODEL DX D(IS=1E-15 RS=0 CJO=1E-12)
.MODEL DY D(IS=1E-15 BV=50 RS=10 CJO=1E-12)
.MODEL DEN D(IS=1E-12 RS=1.7E3, KF=6.53E-15 AF=1)
.MODEL DIN D(IS=1E-12 RS=12090 KF=0 AF=1)
.ENDS ADA4627
.subckt OP1177 1 2 3 4 5
A1 2 1 0 0 0 0 0 0 OTA g=0 in=0.2p ink=10 incm=.001p incmk=10
C6 3 1 1.25p Rpar=280G noiseless
C1 2 1 1p noiseless
G1 0 M 3 0 1m
G2 0 M 4 0 1m
R3 M 0 1K noiseless
S1 N004 M 4 3 UVLO
D3 N004 3 X1
D4 4 N004 X2
C7 1 4 1.25p Rpar=280G noiseless
C8 3 2 1.25p Rpar=280G noiseless
C9 2 4 1.25p Rpar=280G noiseless
I1 3 2 2n load
I2 3 1 2n load
A2 0 N006 M M M M N004 M OTA g=20u Iout=1.8u en=7.9n enk=0.42 Vlow=-1e308 Vhigh=1e308 Cout=2.3p asym
C10 N005 0 44p
L1 N002 N005 22p
C5 N002 0 22p Rpar=1K noiseless
M1 3 N003 5 5 N temp=27
M2 4 N003 5 5 P temp=27
C3 3 5 2p
C4 5 4 2p
C13 5 N003 5p Rser=1Meg noiseless
R5 N003 N004 1Meg
D1 5 N003 Y2A
D6 5 N003 Y2B
D9 N003 5 Y1
B1 N002 0 I=2m*dnlim(uplim(V(2),V(3)-1.4,.1), V(4)+1.4, .1)+100n*V(2)
B2 0 N002 I=2m*dnlim(uplim(V(1),V(3)-1.4,.1), V(4)+1.4, .1)+100n*V(1)
L3 N005 N006 22µ
C2 N006 0 22p Rpar=1K noiseless
D2 3 4 IQ
.model X1 D(Ron=1K Roff=100G Vfwd=-0.75 epsilon=.1 noiseless)
.model X2 D(Ron=10 Roff=100G Vfwd=-0.75 epsilon=.1 noiseless)
.model Y1 D(Ron=18k Roff=100G Vfwd=582m epsilon=500m noiseless)
.model Y2A D(Ron=25k Roff=100G Vfwd=350m epsilon=500m noiseless)
.model Y2B D(Ron=5k Roff=100G Vfwd=590m epsilon=500m noiseless)
.model N VDMOS(Vto=-55m Kp=75m Ksubthres=100m noiseless)
.model P VDMOS(Vto=55m Kp=125m pchan Ksubthres=100m noiseless)
.model UVLO SW(Ron=1K Roff=3G Vt=-3.75 Vh=.25 noiseless)
.model IQ D(Ron=2K Vfwd=2 epsilon=1 Ilimit=0.014m noiseless)
.param Vs=15
.ends OP1177
* OP213 SPICE Macro-model
* Developed by: JCB / PMI
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (09/1992)
* Copyright 1992, 2012 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
*
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT OP213 3 2 7 4 6
*
* INPUT STAGE
*
R3 4 19 1.5E3
R4 4 20 1.5E3
C1 19 20 5.31E-12
I1 7 18 106E-6
IOS 2 3 25E-09
EOS 12 5 POLY(1) 51 4 25E-06 1
Q1 19 3 18 PNP1
Q2 20 12 18 PNP1
CIN 3 2 3E-12
D1 3 1 DY
D2 2 1 DY
EN 5 2 22 0 1
GN1 0 2 25 0 1E-5
GN2 0 3 28 0 1E-5
*
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE
*
DN1 21 22 DEN
DN2 22 23 DEN
VN1 21 0 DC 2
VN2 0 23 DC 2
*
* CURRENT NOISE SOURCE WITH FLICKER NOISE
*
DN3 24 25 DIN
DN4 25 26 DIN
VN3 24 0 DC 2
VN4 0 26 DC 2
*
* SECOND CURRENT NOISE SOURCE
*
DN5 27 28 DIN
DN6 28 29 DIN
VN5 27 0 DC 2
VN6 0 29 DC 2
*
* GAIN STAGE & DOMINANT POLE AT .2000E+01 HZ
*
G2 34 36 19 20 2.65E-04
R7 34 36 39E+06
V3 35 4 DC 6
D4 36 35 DX
VB2 34 4 1.6
*
* SUPPLY/2 GENERATOR
*
ISY 7 4 0.2E-3
R10 7 60 40E+3
R11 60 4 40E+3
C3 60 0 1E-9
*
* CMRR STAGE & POLE AT 6 kHZ
*
ECM 50 4 POLY(2) 3 60 2 60 0 0.8 0.8
CCM 50 51 26.5E-12
RCM1 50 51 1E6
RCM2 51 4 1
*
* OUTPUT STAGE
*
R12 37 36 1E3
R13 38 36 500
C4 37 6 20E-12
C5 38 39 20E-12
M1 39 36 4 4 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
M2 45 36 4 4 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
D5 39 47 DX
D6 47 45 DX
Q3 39 40 41 QPA 8
VB 7 40 DC 0.861
R14 7 41 375
Q4 41 7 43 QNA 1
R17 7 43 15
Q5 43 39 6 QNA 20
Q6 46 45 6 QPA 20
R18 46 4 15
Q7 36 46 4 QNA 1
M3 6 36 4 4 MN L=9E-6 W=2000E-6 AD=30E-9 AS=30E-9
*
* NONLINEAR MODELS USED
*
.MODEL DX D (IS=1E-15)
.MODEL DY D (IS=1E-15 BV=7)
.MODEL PNP1 PNP (BF=220)
.MODEL DEN D(IS=1E-12 RS=1016 KF=3.278E-15 AF=1)
.MODEL DIN D(IS=1E-12 RS=100019 KF=4.173E-15 AF=1)
.MODEL QNA NPN(IS=1.19E-16 BF=253 VAF=193 VAR=15 RB=2.0E3
+ IRB=7.73E-6 RBM=132.8 RE=4 RC=209 CJE=2.1E-13 VJE=0.573
+ MJE=0.364 CJC=1.64E-13 VJC=0.534 MJC=0.5 CJS=1.37E-12
+ VJS=0.59 MJS=0.5 TF=0.43E-9 PTF=30)
.MODEL QPA PNP(IS=5.21E-17 BF=131 VAF=62 VAR=15 RB=1.52E3
+ IRB=1.67E-5 RBM=368.5 RE=6.31 RC=354.4 CJE=1.1E-13
+ VJE=0.745 MJE=0.33 CJC=2.37E-13 VJC=0.762 MJC=0.4
+ CJS=7.11E-13 VJS=0.45 MJS=0.412 TF=1.0E-9 PTF=30)
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3 TOX=8.5E-8
+ LD=1.48E-6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5
+ XJ=1.75E-6 KAPPA=0.8 ETA=0.066 THETA=0.01 TPG=1 CJ=2.9E-4
+ PB=0.837 MJ=0.407 CJSW=0.5E-9 MJSW=0.33)
*
.ENDS
* OP2177 SPICE Macro-model
* Developed by: SB, ADSiV apps
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (05/2002)
* Copyright 2002, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include: Vsy=±15V
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT OP2177 1 2 99 50 34
*
* INPUT STAGE & POLE AT 100 MHZ
*
R3 5 51 6.8E3
R4 6 51 6.8E3
CIN 1 2 1.5E-12
C2 5 6 3.5E-12
I1 97 4 500E-6
IOS 1 2 0.1E-9
EOS 9 3 POLY(2) (26, 28) (73, 98) 15E-6 1 1
Q1 5 2 7 QX
Q2 6 9 8 QX
R5 7 4 50
R6 8 4 50
D1 2 36 DZ
D2 1 36 DZ
EN 3 1 10 0 1
GN1 0 2 13 0 1
GN2 0 1 16 0 1
*
EREF 98 0 28 0 1
EP 97 0 99 0 1
EM 51 0 50 0 1
*
* VOLTAGE NOISE SOURCE
*
DN1 35 10 DEN
DN2 10 11 DEN
VN1 35 0 DC 2
VN2 0 11 DC 2
*
* CURRENT NOISE SOURCE
*
DN3 12 13 DIN
DN4 13 14 DIN
VN3 12 0 DC 2
VN4 0 14 DC 2
*
* CURRENT NOISE SOURCE
*
DN5 15 16 DIN
DN6 16 17 DIN
VN5 15 0 DC 2
VN6 0 17 DC 2
*
* GAIN STAGE & DOMINANT POLE AT 0.439 HZ
*
R7 18 98 1.45E7
C3 18 98 25E-9
G1 98 18 5 6 5.15E-3
V2 97 19 1.5
V3 20 51 1.5
D3 18 19 DX
D4 20 18 DX
*
* POLE/ZERO PAIR AT 1.5MHz/12.7MHz
*
R8 21 98 1E3
R9 21 22 1.25E3
C4 22 98 10E-12
G2 98 21 18 28 1E-3
*
* POLE AT 2568 MHz
*
R10 23 98 1
C5 23 98 62E-12
G3 98 23 21 28 1
*
* POLE AT 2568 MHz
*
R11 24 98 1
C6 24 98 62E-12
G4 98 24 23 28 1
*
* POLE AT 2568 MHz
*
R14 27 98 1
C8 27 98 62E-12
G5 98 27 24 28 1
*
* COMMON-MODE GAIN NETWORK WITH ZERO AT 1 kHZ
*
R12 25 26 1E6
C7 25 26 159.155E-12
R13 26 98 1
E2 25 98 POLY(2) 1 98 2 98 0 0.28 0.28
*
*PSRR=121dB
EPSY 98 72 POLY(1) (99,50) 0 1
RPS3 72 73 1E6
CPS3 72 73 3E-9
RPS4 73 98 1
* OUTPUT STAGE
*
R15 28 99 100E3
R16 28 50 100E3
C9 28 50 1E-6
ISY 99 50 250E-6
R17 29 99 100
R18 29 50 100
L2 29 34 1E-9
G6 32 50 27 29 10E-3
G7 33 50 29 27 10E-3
G8 29 99 99 27 10E-3
G9 50 29 27 50 10E-3
V4 30 29 1.3
V5 29 31 3.8
F1 29 0 V4 1
F2 0 29 V5 1
D5 27 30 DX
D6 31 27 DX
D7 99 32 DX
D8 99 33 DX
D9 50 32 DY
D10 50 33 DY
*
* MODELS USED
*
.MODEL QX PNP(BF=5E5)
.MODEL DX D(IS=1E-12)
.MODEL DY D(IS=1E-15 BV=50)
.MODEL DZ D(IS=1E-15 BV=7.0)
.MODEL DEN D(IS=1E-12 RS=6.8E3 KF=1.95E-15 AF=1)
.MODEL DIN D(IS=1E-12 RS=77.3E-6 KF=3.38E-15 AF=1)
.ENDS OP2177
* OP284 SPICE Macro-model
* Developed by: HH / ADSJ, ARG / ADSC
* Revision History: 08/10/2012 - Updated to new header style
* 4.0 (09/2009) - Increased Ccm, Cdiff
* 3.0 - Adjusted Ccm, Cdiff, and en.
* 2.0 (11/1995) - Changed input transistor betas to conform to final data sheet Ios typical spec of 60nA.
* Copyright 1993, 2012 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT OP284 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
Q1 5 2 3 QIN 1
Q2 6 11 3 QIN 1
Q3 7 2 4 QIP 1
Q4 8 11 4 QIP 1
DC1 2 11 DC
DC2 11 2 DC
Q5 4 9 99 QIP 1
Q6 9 9 99 QIP 1
Q7 3 10 50 QIN 1
Q8 10 10 50 QIN 1
R1 99 5 4E3
R2 99 6 4E3
R3 7 50 4E3
R4 8 50 4E3
IREF 9 10 50.5E-6
EOS 1 11 POLY(2) (22,98) (14,98) -25E-6 1E-2 1
IOS 2 1 5E-9
CIN 1 2 2.3E-12
CCM1 1 50 7.2E-12
CCM2 2 50 7.2E-12
GN1 98 1 (17,98) 1E-3
GN2 98 2 (23,98) 1E-3
*
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE
*
VN1 13 98 DC 2
VN2 98 15 DC 2
DN1 13 14 DEN
DN2 14 15 DEN
*
* CURRENT NOISE SOURCE WITH FLICKER NOISE
*
VN3 16 98 DC 2
VN4 98 18 DC 2
DN3 16 17 DIN
DN4 17 18 DIN
*
* 2ND CURRENT NOISE SOURCE WITH FLICKER NOISE
*
VN5 19 98 DC 2
VN6 98 24 DC 2
DN5 19 23 DIN
DN6 23 24 DIN
*
* GAIN STAGE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
G1 98 20 POLY(2) (6,5) (8,7) 0 0.5E-3 0.5E-3
R9 20 98 1E3
*
* COMMON MODE STAGE WITH ZERO AT 100HZ
*
ECM 98 21 POLY(2) (1,98) (2,98) 0 0.5 0.5
R10 21 22 1
R11 22 98 100E-6
C4 21 22 1.592E-3
*
* NEGATIVE ZERO AT 20MHZ
*
E1 27 98 (20,98) 1E6
R17 27 28 1
R18 28 98 1E-6
C8 25 26 7.958E-9
ENZ 25 98 (27,28) 1
VNZ 26 98 DC 0
FNZ 27 28 VNZ -1
*
* POLE AT 40MHZ
*
G4 98 29 (28,98) 1
R19 29 98 1
C9 29 98 3.979E-9
*
* POLE AT 40MHZ
*
G5 98 30 (29,98) 1
R20 30 98 1
C10 30 98 3.979E-9
*
* OUTUT STAGE
*
ISY 99 50 0.276E-3
GIN 50 31 POLY(1) (30,98) .862574E-6 505.879E-6
RIN 31 50 2.75E6
VB 99 32 0.7
Q11 32 31 33 QON 1
R21 33 34 4.5E3
I1 34 50 50E-6
R22 99 35 6E3
Q12 36 36 35 QOP 1
I2 36 50 50E-6
R23 99 37 2.6E3
R24 34 38 5E3
Q13 39 36 37 QOP 1
Q14 39 38 40 QON 1.5
R25 40 50 40
Q15 39 39 41 QON 1
R26 41 42 1E3
R27 99 43 220
Q16 44 44 43 QOP 1.5
Q17 44 39 42 QON 1
R28 42 50 2E3
VSCP 99 97 DC 0
FSCP 46 99 VSCP 1
RSCP 46 99 40
Q20 44 46 99 QOP 1
Q18 45 44 97 QOP 4.5
Q19 45 34 51 QON 4.5
VSCN 51 50 DC 0
FSCN 50 47 VSCN 1
RSCN 47 50 40
Q21 34 47 50 QON 1
CC2 31 45 20E-12
CF1 31 34 15E-12
CF2 31 42 15E-12
CO1 34 45 15E-12
CO2 42 45 5E-12
D3 45 99 DX
D4 50 45 DX
.MODEL DC D(IS=130E-21)
.MODEL DX D()
.MODEL DEN D(RS=380 KF=6E-15 AF=1)
.MODEL DIN D(RS=5.358 KF=56E-15 AF=1)
.MODEL QIN NPN(BF=120 VA=200 IS=0.5E-16)
.MODEL QIP PNP(BF=90 VA=60 IS=0.5E-16)
.MODEL QON NPN(BF=200 VA=200 IS=0.5E-16 RC=50)
.MODEL QOP PNP(BF=200 VA=200 IS=0.5E-16 RC=160)
.ENDS OP284
* OP285 SPICE Macro-model
* Developed by: ARG / PMI
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (06/1992)
* Copyright 1992, 2012 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT OP285 1 2 99 50 34
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE & POLE AT 100 MHZ
*
R3 5 51 2.188
R4 6 51 2.188
CIN 1 2 1.5E-12
C2 5 6 364E-12
I1 97 4 100E-3
IOS 1 2 1E-9
EOS 9 3 POLY(1) 26 28 35E-6 1
Q1 5 2 7 QX
Q2 6 9 8 QX
R5 7 4 1.672
R6 8 4 1.672
D1 2 36 DZ
D2 1 36 DZ
EN 3 1 10 0 1
GN1 0 2 13 0 1
GN2 0 1 16 0 1
*
EREF 98 0 28 0 1
EP 97 0 99 0 1
EM 51 0 50 0 1
*
* VOLTAGE NOISE SOURCE
*
DN1 35 10 DEN
DN2 10 11 DEN
VN1 35 0 DC 2
VN2 0 11 DC 2
*
* CURRENT NOISE SOURCE
*
DN3 12 13 DIN
DN4 13 14 DIN
VN3 12 0 DC 2
VN4 0 14 DC 2
CN1 13 0 7.53E-3
*
* CURRENT NOISE SOURCE
*
DN5 15 16 DIN
DN6 16 17 DIN
VN5 15 0 DC 2
VN6 0 17 DC 2
CN2 16 0 7.53E-3
*
* GAIN STAGE & DOMINANT POLE AT 32 HZ
*
R7 18 98 1.09E6
C3 18 98 4.55E-9
G1 98 18 5 6 4.57E-1
V2 97 19 1.4
V3 20 51 1.4
D3 18 19 DX
D4 20 18 DX
*
* POLE/ZERO PAIR AT 1.5MHz/2.7MHz
*
R8 21 98 1E3
R9 21 22 1.25E3
C4 22 98 47.2E-12
G2 98 21 18 28 1E-3
*
* POLE AT 100 MHZ
*
R10 23 98 1
C5 23 98 1.59E-9
G3 98 23 21 28 1
*
* POLE AT 100 MHZ
*
R11 24 98 1
C6 24 98 1.59E-9
G4 98 24 23 28 1
*
* COMMON-MODE GAIN NETWORK WITH ZERO AT 1 kHZ
*
R12 25 26 1E6
C7 25 26 159.155E-12
R13 26 98 1
E2 25 98 POLY(2) 1 98 2 98 0 2.506 2.506
*
* POLE AT 100 MHZ
*
R14 27 98 1
C8 27 98 1.59E-9
G5 98 27 24 28 1
*
* OUTPUT STAGE
*
R15 28 99 100E3
R16 28 50 100E3
C9 28 50 1E-6
ISY 99 50 1.85E-3
R17 29 99 100
R18 29 50 100
L2 29 34 1E-9
G6 32 50 27 29 10E-3
G7 33 50 29 27 10E-3
G8 29 99 99 27 10E-3
G9 50 29 27 50 10E-3
V4 30 29 1.3
V5 29 31 3.8
F1 29 0 V4 1
F2 0 29 V5 1
D5 27 30 DX
D6 31 27 DX
D7 99 32 DX
D8 99 33 DX
D9 50 32 DY
D10 50 33 DY
*
* MODELS USED
*
.MODEL QX PNP(BF=5E5)
.MODEL DX D(IS=1E-12)
.MODEL DY D(IS=1E-15 BV=50)
.MODEL DZ D(IS=1E-15 BV=7.0)
.MODEL DEN D(IS=1E-12 RS=4.35K KF=1.95E-15 AF=1)
.MODEL DIN D(IS=1E-12 RS=77.3E-6 KF=3.38E-15 AF=1)
.ENDS OP285
* OP292 SPICE Macro-model
* Developed by: ARG / PMI
* Revision History: 08/10/2012 - Updated to new header style
* 2.0 (03/1995)
* Copyright 1993, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT OP292 2 1 99 50 34
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE AND POLE AT 40MHZ
*
I1 99 4 50E-6
IOS 2 1 10E-9
EOS 2 3 POLY(1) (21,30) 1.5E-3 75
CIN 1 2 3E-12
Q1 5 1 7 QP
Q2 6 3 8 QP
R3 5 50 2E3
R4 6 50 2E3
R5 4 7 966
R6 4 8 966
C1 5 6 .995E-12
*
* GAIN STAGE
*
EREF 98 0 (30,0) 1
G1 98 9 (5,6) 500E-6
R7 9 98 210.819E3
D1 9 10 DX
D2 11 9 DX
V1 99 10 .6
V2 11 50 .6
*
* ZERO/POLE AT 6MHZ/12MHZ
*
E1 12 98 (9,30) 2
R8 12 13 1
R9 13 98 1
C3 12 13 26.526E-9
*
* ZERO AT 15MHZ
*
E2 14 98 (13,30) 1E6
R10 14 15 1E6
R11 15 98 1
C4 14 15 10.610E-15
*
* COMMON MODE STAGE WITH ZERO AT 40KHZ
*
ECM 20 98 POLY(2) (1,30) (2,30) 0 0.5 0.5
R20 20 21 1E6
R21 21 98 1
C5 20 21 3.979E-12
*
* POLE AT 100MHZ
*
G2 98 16 (15,30) 1
R12 16 98 1
C6 16 98 1.592E-9
*
* OUTPUT STAGE
*
RS1 99 30 1E6
RS2 30 50 1E6
ISY 99 50 .44E-3
G3 31 50 POLY(1) (16,30) -1.635E-6 4E-6
R16 31 50 1E6
DCL 50 31 DZ
I2 99 32 250E-6
RCL 33 50 56
M1 32 31 50 50 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
M2 34 31 50 50 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
CC 31 32 14E-12
Q3 99 32 34 QNA
Q4 33 32 34 QPA
Q5 31 33 50 QNA
.MODEL QNA NPN(IS=1.19E-16 BF=253 NF=0.99 VAF=193 IKF=2.76E-3
+ ISE=2.57E-13 NE=5 BR=0.4 NR=0.988 VAR=15 IKR=1.465E-4
+ ISC=6.9E-16 NC=0.99 RB=2.0E3 IRB=7.73E-6 RBM=132.8 RE=4 RC=209
+ CJE=2.1E-13 VJE=0.573 MJE=0.364 FC=0.5 CJC=1.64E-13 VJC=0.534 MJC=0.5
+ CJS=1.37E-12 VJS=0.59 MJS=0.5 TF=0.43E-9 PTF=30)
.MODEL QPA PNP(IS=5.21E-17 BF=131 NF=0.99 VAF=62 IKF=8.35E-4
+ ISE=1.09E-14 NE=2.61 BR=0.5 NR=0.984 VAR=15 IKR=3.96E-5
+ ISC=7.58E-16 NC=0.985 RB=1.52E3 IRB=1.67E-5 RBM=368.5 RE=6.31 RC=354.4
+ CJE=1.1E-13 VJE=0.745 MJE=0.33 FC=0.5 CJC=2.37E-13 VJC=0.762 MJC=0.4
+ CJS=7.11E-13 VJS=0.45 MJS=0.412 TF=1.0E-9 PTF=30)
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3
+ TOX=8.5E-8 LD=1.48E-6 WD=1E-6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5
+ XJ=1.75E-6 KAPPA=0.8 ETA=0.066 THETA=0.01 TPG=1 CJ=2.9E-4 PB=0.837
+ MJ=0.407 CJSW=0.5E-9 MJSW=0.33)
.MODEL QP PNP(BF=61.5)
.MODEL DX D
.MODEL DZ D(BV=3.6)
.ENDS OP292
* OP413 SPICE Macro-model
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (03/1994)
* Copyright 1992, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
*
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT OP413 3 2 7 4 6
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
R3 4 19 1.5E3
R4 4 20 1.5E3
C1 19 20 5.31E-12
I1 7 18 106E-6
IOS 2 3 25E-09
EOS 12 5 POLY(1) 51 4 25E-06 1
Q1 19 3 18 PNP1
Q2 20 12 18 PNP1
CIN 3 2 3E-12
D1 3 1 DY
D2 2 1 DY
EN 5 2 22 0 1
GN1 0 2 25 0 1E-5
GN2 0 3 28 0 1E-5
*
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE
*
DN1 21 22 DEN
DN2 22 23 DEN
VN1 21 0 DC 2
VN2 0 23 DC 2
*
* CURRENT NOISE SOURCE WITH FLICKER NOISE
*
DN3 24 25 DIN
DN4 25 26 DIN
VN3 24 0 DC 2
VN4 0 26 DC 2
*
* SECOND CURRENT NOISE SOURCE
*
DN5 27 28 DIN
DN6 28 29 DIN
VN5 27 0 DC 2
VN6 0 29 DC 2
*
* GAIN STAGE & DOMINANT POLE AT 2HZ
*
G2 34 36 19 20 2.65E-04
R7 34 36 39E6
V3 35 4 DC 6
D4 36 35 DX
VB2 34 4 1.6
*
* SUPPLY/2 GENERATOR
*
ISY 7 4 0.2E-3
R10 7 60 40E3
R11 60 4 40E3
C3 60 0 1E-9
*
* CMRR STAGE & POLE AT 6kHZ
*
ECM 50 4 POLY(2) 3 60 2 60 0 0.8 0.8
CCM 50 51 26.5E-12
RCM1 50 51 1E6
RCM2 51 4 1
*
* OUTPUT STAGE
*
R12 37 36 1E3
R13 38 36 500
C4 37 6 20E-12
C5 38 39 20E-12
M1 39 36 4 4 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
M2 45 36 4 4 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
D5 39 47 DX
D6 47 45 DX
Q3 39 40 41 QPA 8
VB 7 40 DC 0.861
R14 7 41 375
Q4 41 7 43 QNA 1
R17 7 43 15
Q5 43 39 6 QNA 20
Q6 46 45 6 QPA 20
R18 46 4 15
Q7 36 46 4 QNA 1
M3 6 36 4 4 MN L=9E-6 W=2000E-6 AD=30E-9 AS=30E-9
*
* NONLINEAR MODELS USED
*
.MODEL DX D (IS=1E-15)
.MODEL DY D (IS=1E-15 BV=7)
.MODEL PNP1 PNP (BF=220)
.MODEL DEN D(IS=1E-12 RS=1016 KF=3.278E-15 AF=1)
.MODEL DIN D(IS=1E-12 RS=100019 KF=4.173E-15 AF=1)
.MODEL QNA NPN(IS=1.19E-16 BF=253 VAF=193 VAR=15 RB=2.0E3
+ IRB=7.73E-6 RBM=132.8 RE=4 RC=209 CJE=2.1E-13 VJE=0.573
+ MJE=0.364 CJC=1.64E-13 VJC=0.534 MJC=0.5 CJS=1.37E-12
+ VJS=0.59 MJS=0.5 TF=0.43E-9 PTF=30)
.MODEL QPA PNP(IS=5.21E-17 BF=131 VAF=62 VAR=15 RB=1.52E3
+ IRB=1.67E-5 RBM=368.5 RE=6.31 RC=354.4 CJE=1.1E-13
+ VJE=0.745 MJE=0.33 CJC=2.37E-13 VJC=0.762 MJC=0.4
+ CJS=7.11E-13 VJS=0.45 MJS=0.412 TF=1.0E-9 PTF=30)
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3 TOX=8.5E-8
+ LD=1.48E-6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5
+ XJ=1.75E-6 KAPPA=0.8 ETA=0.066 THETA=0.01 TPG=1 CJ=2.9E-4
+ PB=0.837 MJ=0.407 CJSW=0.5E-9 MJSW=0.33)
.ENDS OP413
* OP4177 SPICE Macro-model
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (05/2002)
* Copyright 2002, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include: Vsy=+/-15V
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT OP4177 1 2 99 50 34
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE & POLE AT 100 MHZ
*
R3 5 51 6.8E3
R4 6 51 6.8E3
CIN 1 2 1.5E-12
C2 5 6 3.5E-12
I1 97 4 500E-6
IOS 1 2 0.1E-9
EOS 9 3 POLY(2) (26, 28) (73, 98) 15E-6 1 1
Q1 5 2 7 QX
Q2 6 9 8 QX
R5 7 4 50
R6 8 4 50
D1 2 36 DZ
D2 1 36 DZ
EN 3 1 10 0 1
GN1 0 2 13 0 1
GN2 0 1 16 0 1
*
EREF 98 0 28 0 1
EP 97 0 99 0 1
EM 51 0 50 0 1
*
* VOLTAGE NOISE SOURCE
*
DN1 35 10 DEN
DN2 10 11 DEN
VN1 35 0 DC 2
VN2 0 11 DC 2
*
* CURRENT NOISE SOURCE
*
DN3 12 13 DIN
DN4 13 14 DIN
VN3 12 0 DC 2
VN4 0 14 DC 2
*
* CURRENT NOISE SOURCE
*
DN5 15 16 DIN
DN6 16 17 DIN
VN5 15 0 DC 2
VN6 0 17 DC 2
*
* GAIN STAGE & DOMINANT POLE AT 0.439 HZ
*
R7 18 98 1.45E7
C3 18 98 25E-9
G1 98 18 5 6 5.15E-3
V2 97 19 1.5
V3 20 51 1.5
D3 18 19 DX
D4 20 18 DX
*
* POLE/ZERO PAIR AT 1.5MHz/12.7MHz
*
R8 21 98 1E3
R9 21 22 1.25E3
C4 22 98 10E-12
G2 98 21 18 28 1E-3
*
* POLE AT 2568 MHz
*
R10 23 98 1
C5 23 98 62E-12
G3 98 23 21 28 1
*
* POLE AT 2568 MHz
*
R11 24 98 1
C6 24 98 62E-12
G4 98 24 23 28 1
*
* POLE AT 2568 MHz
*
R14 27 98 1
C8 27 98 62E-12
G5 98 27 24 28 1
*
* COMMON-MODE GAIN NETWORK WITH ZERO AT 1 kHZ
*
R12 25 26 1E6
C7 25 26 159.155E-12
R13 26 98 1
E2 25 98 POLY(2) 1 98 2 98 0 0.28 0.28
*
*PSRR=121dB
EPSY 98 72 POLY(1) (99,50) 0 1
RPS3 72 73 1E6
CPS3 72 73 3E-9
RPS4 73 98 1
* OUTPUT STAGE
*
R15 28 99 100E3
R16 28 50 100E3
C9 28 50 1E-6
ISY 99 50 250E-6
R17 29 99 100
R18 29 50 100
L2 29 34 1E-9
G6 32 50 27 29 10E-3
G7 33 50 29 27 10E-3
G8 29 99 99 27 10E-3
G9 50 29 27 50 10E-3
V4 30 29 1.3
V5 29 31 3.8
F1 29 0 V4 1
F2 0 29 V5 1
D5 27 30 DX
D6 31 27 DX
D7 99 32 DX
D8 99 33 DX
D9 50 32 DY
D10 50 33 DY
*
* MODELS USED
*
.MODEL QX PNP(BF=5E5)
.MODEL DX D(IS=1E-12)
.MODEL DY D(IS=1E-15 BV=50)
.MODEL DZ D(IS=1E-15 BV=7.0)
.MODEL DEN D(IS=1E-12 RS=6.8E3 KF=1.95E-15 AF=1)
.MODEL DIN D(IS=1E-12 RS=77.3E-6 KF=3.38E-15 AF=1)
.ENDS OP4177
* OP484 SPICE Macro-model
* 1.0 (11/1995)
* Copyright 1993, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT OP484 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
Q1 5 2 3 QIN 1
Q2 6 11 3 QIN 1
Q3 7 2 4 QIP 1
Q4 8 11 4 QIP 1
DC1 2 11 DC
DC2 11 2 DC
Q5 4 9 99 QIP 1
Q6 9 9 99 QIP 1
Q7 3 10 50 QIN 1
Q8 10 10 50 QIN 1
R1 99 5 4E3
R2 99 6 4E3
R3 7 50 4E3
R4 8 50 4E3
IREF 9 10 50.5E-6
EOS 1 11 POLY(2) (22,98) (14,98) -25E-6 1E-2 1
IOS 2 1 1E-9
CIN 1 2 2E-12
GN1 98 1 (17,98) 1E-3
GN2 98 2 (23,98) 1E-3
*
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE
*
VN1 13 98 DC 2
VN2 98 15 DC 2
DN1 13 14 DEN
DN2 14 15 DEN
*
* CURRENT NOISE SOURCE WITH FLICKER NOISE
*
VN3 16 98 DC 2
VN4 98 18 DC 2
DN3 16 17 DIN
DN4 17 18 DIN
*
* 2ND CURRENT NOISE SOURCE WITH FLICKER NOISE
*
VN5 19 98 DC 2
VN6 98 24 DC 2
DN5 19 23 DIN
DN6 23 24 DIN
*
* GAIN STAGE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
G1 98 20 POLY(2) (6,5) (8,7) 0 0.5E-3 0.5E-3
R9 20 98 1E3
*
* COMMON MODE STAGE WITH ZERO AT 100HZ
*
ECM 98 21 POLY(2) (1,98) (2,98) 0 0.5 0.5
R10 21 22 1
R11 22 98 100E-6
C4 21 22 1.592E-3
*
* NEGATIVE ZERO AT 20MHZ
*
E1 27 98 (20,98) 1E6
R17 27 28 1
R18 28 98 1E-6
C8 25 26 7.958E-9
ENZ 25 98 (27,28) 1
VNZ 26 98 DC 0
FNZ 27 28 VNZ -1
*
* POLE AT 40MHZ
*
G4 98 29 (28,98) 1
R19 29 98 1
C9 29 98 3.979E-9
*
* POLE AT 40MHZ
*
G5 98 30 (29,98) 1
R20 30 98 1
C10 30 98 3.979E-9
*
* OUTUT STAGE
*
ISY 99 50 0.276E-3
GIN 50 31 POLY(1) (30,98) .862574E-6 505.879E-6
RIN 31 50 2.75E6
VB 99 32 0.7
Q11 32 31 33 QON 1
R21 33 34 4.5E3
I1 34 50 50E-6
R22 99 35 6E3
Q12 36 36 35 QOP 1
I2 36 50 50E-6
R23 99 37 2.6E3
R24 34 38 5E3
Q13 39 36 37 QOP 1
Q14 39 38 40 QON 1.5
R25 40 50 40
Q15 39 39 41 QON 1
R26 41 42 1E3
R27 99 43 220
Q16 44 44 43 QOP 1.5
Q17 44 39 42 QON 1
R28 42 50 2E3
VSCP 99 97 DC 0.088
FSCP 46 99 VSCP 1
RSCP 46 99 40
Q20 44 46 99 QOP 1
Q18 45 44 97 QOP 4.5
Q19 45 34 51 QON 4.5
VSCN 51 50 DC 0.081
FSCN 50 47 VSCN 1
RSCN 47 50 40
Q21 34 47 50 QON 1
CC2 31 45 20E-12
CF1 31 34 15E-12
CF2 31 42 15E-12
CO1 34 45 15E-12
CO2 42 45 5E-12
D3 45 99 DX
D4 50 45 DX
.MODEL DC D(IS=130E-21)
.MODEL DX D()
.MODEL DEN D(RS=100 KF=12E-15 AF=1)
.MODEL DIN D(RS=5.358 KF=56E-15 AF=1)
.MODEL QIN NPN(BF=120 VA=200 IS=0.5E-16)
.MODEL QIP PNP(BF=90 VA=60 IS=0.5E-16)
.MODEL QON NPN(BF=200 VA=200 IS=0.5E-16 RC=50)
.MODEL QOP PNP(BF=200 VA=200 IS=0.5E-16 RC=160)
.ENDS OP484
* OP492 SPICE Macro-model
* 2.0 (03/1995)
* Copyright 1993, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT OP492 2 1 99 50 34
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE AND POLE AT 40MHZ
*
I1 99 4 50E-6
IOS 2 1 10E-9
EOS 2 3 POLY(1) (21,30) 1.5E-3 75
CIN 1 2 3E-12
Q1 5 1 7 QP
Q2 6 3 8 QP
R3 5 50 2E3
R4 6 50 2E3
R5 4 7 966
R6 4 8 966
C1 5 6 .995E-12
*
* GAIN STAGE
*
EREF 98 0 (30,0) 1
G1 98 9 (5,6) 500E-6
R7 9 98 210.819E3
D1 9 10 DX
D2 11 9 DX
V1 99 10 .6
V2 11 50 .6
*
* ZERO/POLE AT 6MHZ/12MHZ
*
E1 12 98 (9,30) 2
R8 12 13 1
R9 13 98 1
C3 12 13 26.526E-9
*
* ZERO AT 15MHZ
*
E2 14 98 (13,30) 1E6
R10 14 15 1E6
R11 15 98 1
C4 14 15 10.610E-15
*
* COMMON MODE STAGE WITH ZERO AT 40KHZ
*
ECM 20 98 POLY(2) (1,30) (2,30) 0 0.5 0.5
R20 20 21 1E6
R21 21 98 1
C5 20 21 3.979E-12
*
* POLE AT 100MHZ
*
G2 98 16 (15,30) 1
R12 16 98 1
C6 16 98 1.592E-9
*
* OUTPUT STAGE
*
RS1 99 30 1E6
RS2 30 50 1E6
ISY 99 50 .44E-3
G3 31 50 POLY(1) (16,30) -1.635E-6 4E-6
R16 31 50 1E6
DCL 50 31 DZ
I2 99 32 250E-6
RCL 33 50 56
M1 32 31 50 50 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
M2 34 31 50 50 MN L=9E-6 W=1000E-6 AD=15E-9 AS=15E-9
CC 31 32 14E-12
Q3 99 32 34 QNA
Q4 33 32 34 QPA
Q5 31 33 50 QNA
.MODEL QNA NPN(IS=1.19E-16 BF=253 NF=0.99 VAF=193 IKF=2.76E-3
+ ISE=2.57E-13 NE=5 BR=0.4 NR=0.988 VAR=15 IKR=1.465E-4
+ ISC=6.9E-16 NC=0.99 RB=2.0E3 IRB=7.73E-6 RBM=132.8 RE=4 RC=209
+ CJE=2.1E-13 VJE=0.573 MJE=0.364 FC=0.5 CJC=1.64E-13 VJC=0.534 MJC=0.5
+ CJS=1.37E-12 VJS=0.59 MJS=0.5 TF=0.43E-9 PTF=30)
.MODEL QPA PNP(IS=5.21E-17 BF=131 NF=0.99 VAF=62 IKF=8.35E-4
+ ISE=1.09E-14 NE=2.61 BR=0.5 NR=0.984 VAR=15 IKR=3.96E-5
+ ISC=7.58E-16 NC=0.985 RB=1.52E3 IRB=1.67E-5 RBM=368.5 RE=6.31 RC=354.4
+ CJE=1.1E-13 VJE=0.745 MJE=0.33 FC=0.5 CJC=2.37E-13 VJC=0.762 MJC=0.4
+ CJS=7.11E-13 VJS=0.45 MJS=0.412 TF=1.0E-9 PTF=30)
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3
+ TOX=8.5E-8 LD=1.48E-6 WD=1E-6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5
+ XJ=1.75E-6 KAPPA=0.8 ETA=0.066 THETA=0.01 TPG=1 CJ=2.9E-4 PB=0.837
+ MJ=0.407 CJSW=0.5E-9 MJSW=0.33)
.MODEL QP PNP(BF=61.5)
.MODEL DX D
.MODEL DZ D(BV=3.6)
.ENDS OP492
* OP727 SPICE Macro-model Typical Values
* Revision History: 08/10/2012 - Updated to new header style
* 1.2 (04/2009) - Corrected EVP, EVN
* 1.1 (08/2000)
* Copyright 2000, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT OP727 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* PNP INPUT STAGE
*
Q1 5 7 3 PIX
Q2 6 2 3 PIX
RC1 5 50 8000
RC2 6 50 8000
C1 5 6 0.5E-12
D1 3 8 DX
V1 99 8 DC 1.0
I1 99 3 50E-6
EOS 7 1 POLY(3) (73,98) (81,98) (22,98) 0.08E-3 1 1 1
IOS 2 1 1E-9
*
* PSRR=120dB, ZERO AT 150Hz
*
RPS1 70 0 1E+6
RPS2 71 0 1E+6
CPS1 99 70 1E-5
CPS2 50 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1E+6
CPS3 72 73 1.06E-9
RPS4 73 98 1
*
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
* VOLTAGE NOISE REFERENCE OF 15nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 15
RN2 81 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 0 2.6E-6
*
*
* CMRR 110dB, ZERO AT 400Hz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 1E+6
CCM1 21 22 0.397E-9
RCM2 22 98 1
*
* GAIN STAGE
*
G1 98 30 POLY(1) (5,6) 0 28.8E-6
R1 30 98 2.02E+8
CF 45 30 50E-12
D3 30 97 DX
D4 51 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=0.329E-3
M6 45 47 50 50 NOX L=1E-6 W=0.496E-3
EG1 99 46 POLY(1) (98,30) 0.6299 1
EG2 47 50 POLY(1) (30,98) 0.5739 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=10E-6,VTO=-0.328,LAMBDA=0.01,KF=2.5E-23,AF=1)
.MODEL NOX NMOS (LEVEL=2,KP=10E-6,VTO=+0.328,LAMBDA=0.01,KF=2.5E-23,AF=1)
.MODEL PIX PNP (BF=2273,IS=1E-14,VAF=130)
.MODEL DX D(IS=1E-14,RS=5)
.ENDS OP727
* OP747 SPICE Macro-model Typical Values
* 1.2 (04/2009) - Corrected EVP, EVN
* 1.1 (08/2000)
* Copyright 2000, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT OP747 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* PNP INPUT STAGE
*
Q1 5 7 3 PIX
Q2 6 2 3 PIX
RC1 5 50 8000
RC2 6 50 8000
C1 5 6 0.5E-12
D1 3 8 DX
V1 99 8 DC 1.0
I1 99 3 50E-6
EOS 7 1 POLY(3) (73,98) (81,98) (22,98) 0.08E-3 1 1 1
IOS 2 1 1E-9
*
* PSRR=120dB, ZERO AT 150Hz
*
RPS1 70 0 1E+6
RPS2 71 0 1E+6
CPS1 99 70 1E-5
CPS2 50 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1E+6
CPS3 72 73 1.06E-9
RPS4 73 98 1
*
* VOLTAGE NOISE REFERENCE OF 15nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 15
RN2 81 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 0 2.6E-6
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
*
* CMRR 110dB, ZERO AT 400Hz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 1E+6
CCM1 21 22 0.397E-9
RCM2 22 98 1
*
* GAIN STAGE
*
G1 98 30 POLY(1) (5,6) 0 28.8E-6
R1 30 98 2.02E+8
CF 45 30 50E-12
D3 30 97 DX
D4 51 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=0.329E-3
M6 45 47 50 50 NOX L=1E-6 W=0.496E-3
EG1 99 46 POLY(1) (98,30) 0.6299 1
EG2 47 50 POLY(1) (30,98) 0.5739 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=10E-6,VTO=-0.328,LAMBDA=0.01,KF=2.5E-23,AF=1)
.MODEL NOX NMOS (LEVEL=2,KP=10E-6,VTO=+0.328,LAMBDA=0.01,KF=2.5E-23,AF=1)
.MODEL PIX PNP (BF=2273,IS=1E-14,VAF=130)
.MODEL DX D(IS=1E-14,RS=5)
.ENDS OP747
* OP777 SPICE Macro-model Typical Values
* 1.2 (04/2009) - Corrected EVP, EVN
* 1.1 (08/2000)
* Copyright 2000, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT OP777 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* PNP INPUT STAGE
*
Q1 5 7 3 PIX
Q2 6 2 3 PIX
RC1 5 50 8000
RC2 6 50 8000
C1 5 6 0.5E-12
D1 3 8 DX
V1 99 8 DC 1.0
I1 99 3 50E-6
EOS 7 1 POLY(3) (73,98) (81,98) (22,98) 0.08E-3 1 1 1
IOS 2 1 1E-9
*
* PSRR=120dB, ZERO AT 150Hz
*
RPS1 70 0 1E+6
RPS2 71 0 1E+6
CPS1 99 70 1E-5
CPS2 50 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1E+6
CPS3 72 73 1.06E-9
RPS4 73 98 1
*
* VOLTAGE NOISE REFERENCE OF 15nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 15
RN2 81 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 0 2.6E-6
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
*
* CMRR 110dB, ZERO AT 400Hz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 1E+6
CCM1 21 22 0.397E-9
RCM2 22 98 1
*
* GAIN STAGE
*
G1 98 30 POLY(1) (5,6) 0 28.8E-6
R1 30 98 2.02E+8
CF 45 30 50E-12
D3 30 97 DX
D4 51 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=0.329E-3
M6 45 47 50 50 NOX L=1E-6 W=0.496E-3
EG1 99 46 POLY(1) (98,30) 0.6299 1
EG2 47 50 POLY(1) (30,98) 0.5739 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=10E-6,VTO=-0.328,LAMBDA=0.01,KF=2.5E-23,AF=1)
.MODEL NOX NMOS (LEVEL=2,KP=10E-6,VTO=+0.328,LAMBDA=0.01,KF=2.5E-23,AF=1)
.MODEL PIX PNP (BF=2273,IS=1E-14,VAF=130)
.MODEL DX D(IS=1E-14,RS=5)
.ENDS OP777
* AD8235 SPICE Macro-model
* 1.0 (12/2009)
* Copyright 2009, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this
* model indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes: VSY=5V, T=25°C
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* -input
* | rg1
* | | rg2
* | | | +input
* | | | | shutdwn Neg Supply
* | | | | | | ref
* | | | | | | | out
* | | | | | | | | Pos Supply
* | | | | | | | | |
.SUBCKT AD8235 Vin- RG- RG+ Vin+ SDN VNEG REF VOUT VPOS
*Amplifiers
X_U1 Vin- RG- 1 2 9 AMPA
X_U2 Vin+ 7 1 2 VOUT AMPB
*Gain Error for RG resistor
R5 7 RG+ 6
*Adjustable Supply Current for Low Supply Voltage
I3 1 2 6.5E-6
G1 1 2 2 1 1.5E-6
* Shutdown Switches
S1 1 VPOS SDN VNEG SW
S2 2 VNEG SDN VNEG SW
*Resistor Network
R1 REF RG- 209.8K
R2 RG- 9 52.5K
R3 9 7 52.5K
R4 7 VOUT 209.85K
*Switch Model
.MODEL SW VSWITCH(VON=1.3 VOFF=0.5 RON=1 ROFF=1E9)
.ENDS AD8235
*$
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AMPA 1 2 99 50 45
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L=2E-6 W=9.070E-04
M2 6 2 8 8 PIX L=2E-6 W=9.070E-04
Cinp 1 50 4.2pF
Cinn 2 50 4.2pF
Cdiff 1 2 3pF
RD1 4 50 5.333E+04
RD2 6 50 5.333E+04
C1 4 6 7.650E-12
I1 99 8 7.500E-06
V1 9 8 +0.025E-00
D1 9 99 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 0 1 1 1 1
IOS 1 2 -5.0E-12
*
* CMRR=95dB, POLE AT 3500 Hz
*
E1 72 98 POLY(2) (1,98) (2,98) 0 1.289E-02 1.289E-02
R10 72 73 4.613E+01
R20 73 98 3.183E-02
C10 72 73 1.000E-06
*
* PSRR=100dB, POLE AT 100 Hz
*
EPSY 21 98 POLY(1) (99,50) -0.181E-00 -0.03E-00
RPS1 21 22 1.274E+04
RPS2 22 98 2.989E-00
CPS1 21 22 0.20E-07
*
* VOLTAGE NOISE REFERENCE OF 45nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 17.500E-3
HN 81 98 VN1 4.62E+1
RN2 81 98 1
*
* FLICKER NOISE CORNER = 20000 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6531
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) +0.580E-06 0.2710E-06
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
* GAIN STAGE
*
G1 98 30 (4,6) 4.474E-04
R1 30 98 1.00E+06
CF 30 31 1.55E-08
RZ 455 31 1.2280E-03
EZ 455 98 (451 98) 1
V3 32 30 0.279E+00
V4 30 33 0.362E-00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 451 46 99 99 POX L=1E-6 W=3.940E-04
M6 451 47 50 50 NOX L=1E-6 W=4.598E-04
Lout 451 45 10pH
EG1 99 46 POLY(1) (98,30) 3.598E-01 1
EG2 47 50 POLY(1) (30,98) 3.574E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=3.00E-05,VTO=-0.328,LAMBDA=0.015,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=3.00E-05,VTO=+0.328,LAMBDA=0.015,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=5.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=12.400E-11)
*
*
.ENDS AMPA
*
*$
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AMPB 1 2 99 50 45
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L=2E-6 W=9.070E-04
M2 6 2 8 8 PIX L=2E-6 W=9.070E-04
Cinp 1 50 4.2pF
Cinn 2 50 4.2pF
Cdiff 1 2 3pF
RD1 4 50 5.333E+04
RD2 6 50 5.333E+04
C1 4 6 7.650E-12
I1 99 8 7.500E-06
V1 9 8 +0.025E-00
D1 9 99 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 0.926m 1 1 1 1
IOS 1 2 -10E-12
*
* CMRR=95dB, POLE AT 3500 Hz
*
E1 72 98 POLY(2) (1,98) (2,98) 0 1.289E-02 1.289E-02
R10 72 73 4.613E+01
R20 73 98 3.183E-02
C10 72 73 1.000E-06
*
* PSRR=100dB, POLE AT 100 Hz
*
EPSY 21 98 POLY(1) (99,50) -0.181E-00 0.03E-00
RPS1 21 22 2.274E+04
RPS2 22 98 1.989E-00
CPS1 21 22 0.20E-07
*
* VOLTAGE NOISE REFERENCE OF 45nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 17.500E-3
HN 81 98 VN1 4.62E+1
RN2 81 98 1
*
* FLICKER NOISE CORNER = 20000 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6531
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) +0.580E-06 0.2710E-06
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
* GAIN STAGE
*
G1 98 30 (4,6) 4.474E-04
R1 30 98 1.00E+06
CF 30 31 1.55E-08
RZ 455 31 1.2280E-03
EZ 455 98 (451 98) 1
V3 32 30 0.279E+00
V4 30 33 0.362E-00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 451 46 99 99 POX L=1E-6 W=3.940E-04
M6 451 47 50 50 NOX L=1E-6 W=4.598E-04
Lout 451 45 10pH
EG1 99 46 POLY(1) (98,30) 3.598E-01 1
EG2 47 50 POLY(1) (30,98) 3.574E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=3.00E-05,VTO=-0.328,LAMBDA=0.015,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=3.00E-05,VTO=+0.328,LAMBDA=0.015,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=5.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=12.400E-11)
*
*
.ENDS AMPB
*
* AD8236 SPICE Macro-model
* Copyright 2009, 2015 by Analog Devices
*
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
*for License Statement. Use of this model indicates your acceptance
*of the terms and provisions in the License Staement.
*
* BEGIN Notes: VSY=5V, T=25°C
**Not modeled: Distortion, PSRR, Overload Recovery,
* Shutdown Turn On/Turn Off time
*
*Parameters modeled include:
* Vos, Ibias, Supply Current, Input CM limits and Typ output voltge swing over full supply range,
* Bandwidth over all gains, Slew Rate, Output current limits, Voltage & Current Noise,
* Capacitive load drive, CMRR, Output Swing vs. Load Resistance
* Single supply & offset supply functionality.
* END Notes
*
*
* Node Assignments
* -input
* | rg1
* | | rg2
* | | | +input
* | | | |
* | | | | Neg Supply
* | | | | | ref out
* | | | | | | | Pos Supply
* | | | | | | | |
*
.SUBCKT AD8236 Vin- RG- RG+ Vin+ VNEG REF VOUT VPOS
*
*Amplifiers
X_U1 Vin- RG- VPOSa VNEGa 9 AMPA
X_U2 Vin+ 7 VPOSa VNEGa VOUT AMPB
*
*Charge pump for VPOS and VNEG
VposCP VPOSa VPOS dc 0.58
VnegCP VNEG VNEGa dc 0.57
*
*Gain Error for RG resistor
R5 7 RG+ 6
*
*Adjustable Supply Current for Low Supply Voltage
*I3 VPOS VNEG 6.5E-6
*G1 VPOS VNEG VNEG VPOS 1.5E-6
*
*Resistor Network
R1 REF RG- 209.8K
R2 RG- 9 52.5K
R3 9 7 52.5K
R4 7 VOUT 209.85K
.Subckt AMPA 100 101 102 103 104
*
***Power Supplies***
Rz1 102 1020 1e-6
Rz2 103 1030 1e-6
Ibias 1020 1030 dc 0.001e-3
DzPS 98 1020 diode
Iquies 1020 98 dc 0.015e-3
RSW1 98 1030 1e-3
R1 1020 99 1e7
R2 99 1030 1e7
e1 111 110 1020 110 1
e2 110 112 110 1030 1
e3 110 0 99 0 1
*
*
***Inputs***
RSW2 1 100 1e-3
RSW3 9 101 1e-3
VOS 1 2 dc -500e-6
IbiasP 110 2 dc 1.5e-12
IbiasN 110 9 dc 1.5e-12
RinCMP 110 2 110000e6
RinCMN 9 110 110000e6
CinCMP 110 2 4.2e-12
CinCMN 9 110 4.2e-12
IOS 9 2 0.0000005e-6
RinDiff 9 2 220000e3
CinDiff 9 2 3e-12
*
*
***Non-Inverting Input with Clamp***
g1 3 110 110 2 0.001
RInP 3 110 1e3
RX1 40 3 0.001
DInP 40 41 diode
DInN 42 40 diode
VinP 111 41 dc 0.46
VinN 42 112 dc 0.46
*
*
***Vnoise***
hVn 6 5 Vmeas1 707.10678
Vmeas1 20 110 DC 0
Vvn 21 110 dc 0.65
Dvn 21 20 DVnoisy
hVn1 6 7 Vmeas2 707.10678
Vmeas2 22 110 dc 0
Vvn1 23 110 dc 0.65
Dvn1 23 22 DVnoisy
*
*
***Inoise***
FnIN 9 110 Vmeas3 0.4071068
Vmeas3 51 110 dc 0
VnIN 50 110 dc 0.65
DnIN 50 51 DINnoisy
FnIN1 110 9 Vmeas4 0.4071068
Vmeas4 53 110 dc 0
VnIN1 52 110 dc 0.65
DnIN1 52 53 DINnoisy
*
FnIP 2 110 Vmeas5 0.4071068
Vmeas5 31 110 dc 0
VnIP 30 110 dc 0.65
DnIP 30 31 DIPnoisy
FnIP1 110 2 Vmeas6 0.4071068
Vmeas6 33 110 dc 0
VnIP1 32 110 dc 0.65
DnIP1 32 33 DIPnoisy
*
*
***CMRR***
RcmrrP 3 10 1e12
RcmrrN 10 9 1e12
g10 11 110 10 110 -1e-10
Lcmrr 11 12 1e-12
Rcmrr 12 110 1e3
e4 5 3 11 110 1
*
*
*
***Feedback Pin***
*RF 105 104 0.001
*
*
***VFB Stage***
g200 200 110 7 9 1
R200 200 110 250
DzSlewP 201 200 DzSlewP
DzSlewN 201 110 DzSlewN
*
*
***Dominant Pole at 0.1 Hz***
g210 210 110 200 110 0.0025e-6
R210 210 110 1591547.63e6
C210 210 110 1e-12
*
*
***Output Voltage Clamp-1***
RX2 60 210 0.001
DzVoutP 61 60 DzVoutP
DzVoutN 60 62 DzVoutN
DVoutP 61 63 diode
DVoutN 64 62 diode
VoutP 65 63 dc 5.022
VoutN 64 66 dc 5.022
e60 65 110 111 110 1.01
e61 66 110 112 110 1.01
*
*
***Pole at 1000000Hz***
g220 220 110 210 110 0.001
R220 220 110 1000
C220 220 110 159.1548e-12
*
***Pole at 0.4MHz***
g230 230 110 220 110 0.001
R230 230 110 1000
C230 230 110 397.8869e-12
*
***Pole at 0.5MHz***
g240 240 110 230 110 0.001
R240 240 110 1000
C240 240 110 318.3095e-12
*
***Buffer***
g245 245 110 240 110 0.001
R245 245 110 1000
*
***Buffer***
g250 250 110 245 110 0.001
R250 250 110 1000
*
***Buffer***
g255 255 110 250 110 0.001
R255 255 110 1000
*
***Buffer***
g260 260 110 255 110 0.001
R260 260 110 1000
*
***Buffer***
g265 265 110 260 110 0.001
R265 265 110 1000
*
***Buffer***
g270 270 110 265 110 0.001
R270 270 110 1000
*
***Buffer***
e280 280 110 270 110 1
R280 280 285 10
*
***Buffer***
e290 290 110 285 110 1
R290 290 292 10
e295 295 110 292 110 1
*
*
***Output Stage***
g300 300 110 295 110 0.001
R300 300 110 1000
e301 301 110 300 110 1
Rout 302 303 180
Lout 303 310 10e-9
Cout 310 110 2e-12
*
*
***Output Current Limit***
H1 301 304 Vsense1 100
Vsense1 301 302 dc 0
VIoutP 305 304 dc 3.836
VIoutN 304 306 dc 3.836
DIoutP 307 305 diode
DIoutN 306 307 diode
Rx3 307 300 0.001
*
*
***Output Clamp-2***
VoutP1 111 73 dc 1.27
VoutN1 74 112 dc 1.26
DVoutP1 75 73 diode
DVoutN1 74 75 diode
RX4 75 310 0.001
*
*
***Supply Currents***
FIoVcc 314 110 Vmeas8 1
Vmeas8 310 311 dc 0
R314 110 314 1e9
DzOVcc 110 314 diode
DOVcc 102 314 diode
RX5 311 312 0.001
FIoVee 315 110 Vmeas9 1
Vmeas9 312 313 dc 0
R315 315 110 1e9
DzOVee 315 110 diode
DOVee 315 103 diode
*
*
RSW4 104 313 1e-3
*
*
*** Common Models ***
.model diode d(bv=100)
.model DClamp D(IS=1E-15 IBV=1E-13 VJ=0.1)
.model DzVoutP D(BV=4.3)
.model DzVoutN D(BV=4.3)
.model DzSlewP D(BV=10.821)
.model DzSlewN D(BV=2.842)
.model DVnoisy D(IS=7.49e-14 KF=9.87e-18)
.model DINnoisy D(IS=8.58e-21 KF=0.00e0)
.model DIPnoisy D(IS=8.58e-21 KF=0.00e0)
*
*
.ENDS AMPA
*
.subckt AMPB 100 101 102 103 104
*
***Power Supplies***
Rz1 102 1020 1e-6
Rz2 103 1030 1e-6
Ibias 1020 1030 dc 0.001e-3
DzPS 98 1020 diode
Iquies 1020 98 dc 0.015e-3
RSW1 98 1030 1e-3
R1 1020 99 1e7
R2 99 1030 1e7
e1 111 110 1020 110 1
e2 110 112 110 1030 1
e3 110 0 99 0 1
*
*
***Inputs***
RSW2 1 100 1e-3
RSW3 9 101 1e-3
VOS 1 2 dc 500e-6
IbiasP 110 2 dc 0.000001e-6
IbiasN 110 9 dc 0.000001e-6
RinCMP 110 2 110000e6
RinCMN 9 110 110000e6
CinCMP 110 2 4.2e-12
CinCMN 9 110 4.2e-12
IOS 9 2 0.0000005e-6
RinDiff 9 2 220000e3
CinDiff 9 2 3e-12
*
*
***Non-Inverting Input with Clamp***
g1 3 110 110 2 0.001
RInP 3 110 1e3
RX1 40 3 0.001
DInP 40 41 diode
DInN 42 40 diode
VinP 111 41 dc 0.46
VinN 42 112 dc 0.46
*
*
***Vnoise***
hVn 6 5 Vmeas1 707.10678
Vmeas1 20 110 DC 0
Vvn 21 110 dc 0.65
Dvn 21 20 DVnoisy
hVn1 6 7 Vmeas2 707.10678
Vmeas2 22 110 dc 0
Vvn1 23 110 dc 0.65
Dvn1 23 22 DVnoisy
*
*
***Inoise***
FnIN 9 110 Vmeas3 0.4071068
Vmeas3 51 110 dc 0
VnIN 50 110 dc 0.65
DnIN 50 51 DINnoisy
FnIN1 110 9 Vmeas4 0.4071068
Vmeas4 53 110 dc 0
VnIN1 52 110 dc 0.65
DnIN1 52 53 DINnoisy
*
FnIP 2 110 Vmeas5 0.4071068
Vmeas5 31 110 dc 0
VnIP 30 110 dc 0.65
DnIP 30 31 DIPnoisy
FnIP1 110 2 Vmeas6 0.4071068
Vmeas6 33 110 dc 0
VnIP1 32 110 dc 0.65
DnIP1 32 33 DIPnoisy
*
*
***CMRR***
RcmrrP 3 10 1e12
RcmrrN 10 9 1e12
g10 11 110 10 110 -1e-10
Lcmrr 11 12 1e-12
Rcmrr 12 110 1e3
e4 5 3 11 110 1
*
*
**
*
***Feedback Pin***
*RF 105 104 0.001
*
*
***VFB Stage***
g200 200 110 7 9 1
R200 200 110 250
DzSlewP 201 200 DzSlewP
DzSlewN 201 110 DzSlewN
*
*
***Dominant Pole at 0.1 Hz***
g210 210 110 200 110 0.0025e-6
R210 210 110 1591547.63e6
C210 210 110 1e-12
*
*
***Output Voltage Clamp-1***
RX2 60 210 0.001
DzVoutP 61 60 DzVoutP
DzVoutN 60 62 DzVoutN
DVoutP 61 63 diode
DVoutN 64 62 diode
VoutP 65 63 dc 5.022
VoutN 64 66 dc 5.022
e60 65 110 111 110 1.01
e61 66 110 112 110 1.01
*
*
***Pole at 1000000Hz***
g220 220 110 210 110 0.001
R220 220 110 1000
C220 220 110 159.1548e-12
*
***Pole at 0.4MHz***
g230 230 110 220 110 0.001
R230 230 110 1000
C230 230 110 397.8869e-12
*
***Pole at 0.5MHz***
g240 240 110 230 110 0.001
R240 240 110 1000
C240 240 110 318.3095e-12
*
***Buffer***
g245 245 110 240 110 0.001
R245 245 110 1000
*
***Buffer***
g250 250 110 245 110 0.001
R250 250 110 1000
*
***Buffer***
g255 255 110 250 110 0.001
R255 255 110 1000
*
***Buffer***
g260 260 110 255 110 0.001
R260 260 110 1000
*
***Buffer***
g265 265 110 260 110 0.001
R265 265 110 1000
*
***Buffer***
g270 270 110 265 110 0.001
R270 270 110 1000
*
***Buffer***
e280 280 110 270 110 1
R280 280 285 10
*
***Buffer***
e290 290 110 285 110 1
R290 290 292 10
e295 295 110 292 110 1
*
*
***Output Stage***
g300 300 110 295 110 0.001
R300 300 110 1000
e301 301 110 300 110 1
Rout 302 303 180
Lout 303 310 1e-9
Cout 310 110 2e-12
*
*
***Output Current Limit***
H1 301 304 Vsense1 100
Vsense1 301 302 dc 0
VIoutP 305 304 dc 3.836
VIoutN 304 306 dc 3.836
DIoutP 307 305 diode
DIoutN 306 307 diode
Rx3 307 300 0.001
*
*
***Output Clamp-2***
VoutP1 111 73 dc 1.27
VoutN1 74 112 dc 1.26
DVoutP1 75 73 diode
DVoutN1 74 75 diode
RX4 75 310 0.001
*
*
***Supply Currents***
FIoVcc 314 110 Vmeas8 1
Vmeas8 310 311 dc 0
R314 110 314 1e9
DzOVcc 110 314 diode
DOVcc 102 314 diode
RX5 311 312 0.001
FIoVee 315 110 Vmeas9 1
Vmeas9 312 313 dc 0
R315 315 110 1e9
DzOVee 315 110 diode
DOVee 315 103 diode
*
*
RSW4 104 313 1e-3
*
*
*** Common Models ***
.model diode d(bv=100)
.model DClamp D(IS=1E-15 IBV=1E-13 VJ=0.1)
.model DzVoutP D(BV=4.3)
.model DzVoutN D(BV=4.3)
.model DzSlewP D(BV=10.821)
.model DzSlewN D(BV=2.842)
.model DVnoisy D(IS=7.49e-14 KF=9.87e-18)
.model DINnoisy D(IS=8.58e-21 KF=0.00e0)
.model DIPnoisy D(IS=8.58e-21 KF=0.00e0)
*
.ENDS AMPB
.ENDS AD8236
*
*
* AD8634 SPICE Macro-model
* Function: Amplifier
*
* Revision History:
* Rev. 0.0 (Mar 2014) ADSJ-RM
* Copyright 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html
* for License Statement. Use of this model indicates your acceptance
* of the terms and provisions in the License Statement.
*
* modeled:
* +/-15V (30V) only, not checked at lower voltages
* modeling based on the typical values stated in the datasheet table
*
* Parameters modeled include:VOS , CMRR, PSRR, voltage noise,
* Vdo, gbw & phase margin, slew rate, CL Zout, Isy, ISC
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT AD8634 1 2 99 50 45
* INPUT STAGE
*
Q1 5 11 301 QIN 1; 301
Q2 6 2 302 QIN 1; 302
Cx1 5 6 7.0E-12
Q3 7 11 303 QIP 1; 303
Q4 8 2 304 QIP 1; 304
Cx2 7 8 7.0E-12
DC1 2 11 DC
DC2 11 2 DC
Q5 4 9 99 QIP 1;
Q6 9 9 99 QIP 1
Q7 3 10 50 QIN 1;
Q8 10 10 50 QIN 1
R1 99 5 4.5E3
R2 99 6 4.5E3
R3 7 50 4.0E3
R4 8 50 4.0E3
RE1 301 3 12.0E+1
RE2 302 3 12.0E+1
RE3 303 4 12.0E+1
RE4 304 4 12.0E+1
IREF 9 10 69E-06
GREF 9 10 POLY(1) (99,50) 0 2.5E-07
EOS 1 11 POLY(4) (81,98)(83,98)(22,98)(73,98) -90E-6 1 1 1 1
IOS 1 2 -10E-09
CIN 1 2 1.1E-12
CICM1 1 50 2.4E-12
CICM2 2 50 2.4E-12
Dinp1 1 99 DC
Dinp2 50 1 DC
Dinn1 2 99 DC
Dinn2 50 2 DC
GN1 1 98 POLY(1) (1,50) 53E-09 -2.15E-9
GN2 2 98 POLY(1) (2,50) 56E-09 -2.11E-9
*
G101 98 211 POLY(2) (5,6) (7,8) 0 5.3E-04 5.3E-04
R101 211 98 1.0E6
*
E201 311 98 POLY(1) (211,98)0 2.0E+0
R202 311 321 1.8E+3;
C202 311 321 8E-16
R203 321 98 1.8E+3
*
E3 252 98 (321 98) 2E-0
R31 252 253 1.0E+3
C31 253 252 9E-11; -12
R32 253 98 1.0E+3
*
* GAIN STAGE
*
G2 98 251 (253, 98) 1.0E-06
R5 251 98 8.2E5
RF 251 250 75.0E+00
CF 245 250 40.5E-11
EF (245 98) (45,98) 1
D3 251 451 DX
D4 452 251 DX
V1 451 98 -0.038 ;
V2 452 98 -0.29
*
* CMRR
*
ECM 72 98 POLY(2) (1,98) (2,98) 0 3.42E-03 3.42E-03
RCM1 72 73 3.061E+01
RCM2 73 98 7.958E-03
CCM1 72 73 1.0E-6
*
* PSRR
*
EPSY 21 98 POLY(1) (99,50) -197.534E+00 6.584E-00
RPS1 21 22 5.341E+03
RPS2 22 98 7.958E-04
CPS1 21 22 1.000E-06
*
* VOLTAGE NOISE
*
VN1 80 98 0
RN1 80 98 43.5E-3
HN 81 98 VN1 5.3
RN2 81 98 1
*
* FLICKER NOISE CORNER
*
DFN 82 98 DNOISE 1000
IFN 98 82 DC 1E-03
DFN2 182 98 DNOISE
IFN2 98 182 DC 1E-06
GFN 83 98 POLY(1) (182,82) 1.00E-13 1.00E-04
RFN 83 98 1
*
D60 60 0 DN1 1000
I60 0 60 1M
D61 61 0 DN4
I61 0 61 1U
D62 62 0 DN3
I62 0 62 1U
D63 63 0 DN2
I63 0 63 1U
G60 3 50 61 60 .007
G61 2 50 61 60 .008
G62 3 2 62 60 .000092
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 403E-6 6.036E-6
*
* OUTPUT STAGE
*
Q33 450 41 99 POUT
Cco1 450 41 2.5E-12
RB1 40 41 1.5E3
EB1 99 40 POLY(1) (98,251) 7.535E-01 1;
Q34 450 43 50 NOUT
Cco2 450 43 5E-12
RB2 42 43 2.0E3
EB2 42 50 POLY(1) (251,98) 7.520E-01 1;
Lout 45 450 1E-09
*
* MODELS
*
.MODEL DC D(IS=1E-14,CJO=1E-15)
.MODEL DX D(IS=1E-14,CJO=1E-15)
.MODEL DY D(IS=1E-16,RS=0.1)
.MODEL DIN1 D(RS=5.358 KF=56E-15 AF=1)
.MODEL DIN2 D(RS=5.358 KF=56E-15 AF=1)
.MODEL DN1 D IS=1E-16
.MODEL DN2 D IS=1E-16 AF=1 KF=1.05E-17
.MODEL DN3 D IS=1E-16 AF=1 KF=2.8E-17
.MODEL DN4 D IS=1E-16 AF=1 KF=4.5E-17
.MODEL DNOISE D(IS=1E-16,RS=1E-3,KF=1.14E-11)
.MODEL QIN NPN(BF=130 VA=200 IS=0.5E-16)
.MODEL QIP PNP(BF=80 VA=140 IS=0.5E-16)
.MODEL NOUT NPN(BF=140 VA=350 IS=0.5E-16 BR=8.4 VAR=20 RC=4.0E1)
.MODEL POUT PNP(BF=80 VA=130 IS=0.5E-16 BR=5 VAR=20 RC=6.0E1)
*
.ENDS AD8634
* AD8220 SPICE Macro-model 09/09, Rev. C
* PRB IAP ADI
*
* Revision History:
*
* Node assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8220 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
** INPUT STAGE
R1 N009 N008 20E3
R2 N008 Inverting_Out 20E3
R3 N013 noninverting_out 20.002e3
R4 REF N013 20e3
R5 RG- N003 24700
R6 RG+ N012 24724
D3 N003 P001 D
D4 P002 N003 D
V3 P002 VNEGx 0.84
V4 VPOSx P001 2.35
D5 N012 P003 D
D6 P004 N012 D
V5 P004 VNEGx 0.84
V6 VPOSx P003 2.35
D7 N005 P005 D
D8 P006 N005 D
V7 P006 VNEGx -10
V8 VPOSx P005 -10
D9 N019 P007 D
D10 P008 N019 D
V9 P008 VNEGx -10
V10 VPOSx P007 -10
D11 N009 P009 D
D12 P010 N009 D
V11 P010 N016 1.03
V12 N010 P009 1
D13 REF P011 D
D14 P012 REF D
V13 P012 VNEGx .3
V14 VPOSx P011 .3
D15 N013 P013 D
D16 P014 N013 D
V15 P014 VNEGx 0.6
V16 VPOSx P013 0.6
E4 Inverting_Out 0 N003 0 1
E5 noninverting_out 0 N012 0 1
Q1 Inv_Fdbk N002 RG- 0 PNP
Q2 Pos_Fdbk N015 RG+ 0 PNP
V1 VBIAS -Vs -10
I1 Pos_Fdbk VBIAS 9E-6
I2 Inv_Fdbk VBIAS 9E-6
C1 N003 Inv_Fdbk 3.8035e-12
C2 N012 Pos_Fdbk 3.8e-12
E8 N002 0 N005 0 1
E9 N015 0 N019 0 1
VOSI_Neg N004 IN- 25E-6
VOSI_Pos IN+ N017 24E-6
VOSO VOUT N011 300E-6
C3 RG- 0 .200e-12
C4 RG+ 0 .135e-12
I23 IN- 0 3E-12
I24 IN+ 0 3.2E-12
G1 0 IN+ N020 N021 .7e-9
R13 IN+ N020 10e9
R14 N020 IN- 10e9
R15 +Vs N021 10e9
R16 N021 -Vs 10e9
G2 0 IN- N020 N021 .7e-9
E10 VPOSx 0 +Vs 0 1
I3 +Vs -Vs 725E-6
G3 +Vs -Vs +Vs -Vs 1e-6
E11 VNEGx 0 -Vs 0 1
R17 VBIAS Inv_Fdbk 10e9
R18 Pos_Fdbk VBIAS 10e9
H3 N006 N004 V24 14
V24 N001 0 0
R19 N001 0 .0166
H4 N011 N009 V25 100
V25 N007 0 0
R20 N007 0 .0166
H5 N018 N017 V26 14
V26 N014 0 0
R21 N014 0 .0166
G4 0 N005 N006 N005 1E-3
G5 0 N019 N018 N019 1E-3
G6 0 N003 VBIAS Inv_Fdbk 1
G7 0 N012 VBIAS Pos_Fdbk 1
G8 0 N009 N013 N008 1
R10 N005 0 10e9
R7 N003 0 10E9
R11 N019 0 10E9
R8 N012 0 10E9
R9 N009 0 10E9
*C5 N008 N009 8e-12
H1 VPOSx N010 POLY(1) VOSO 0 0 8000
H2 N016 VNEGx POLY(1) VOSO 0 0 8000
* MODELS USED
*
.model D D
.model PNP PNP (BF=10E5 VAF=20000)
.ENDS AD8220
* AD8221 SPICE Macro-model
* Revision History:
* A (10/2010) - PRB (Changed Negative Zero stage to remove the
* negative capacitor value.)
* C (09/2014) - SH (Improved convergence of input clamps, added 1/f noise and current noise, removed LIMIT statement,
* load currents from output and preamplifier are reflected in the supplies, bug fixes, organized netlist)
* Copyright 2010, 2014 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters modeled include:
* Gain error, Vos, Ibias
* Bandwidth
* Voltage and current noise with 1/f noise
* CMRR vs frequency
* Supply current incl preamp and output load currents
* Output clamp vs load
* Input common-mode range limitations
* Slew Rate
* Pulse response vs cap load
*
* END Notes
*
* Node assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8221 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
** INPUT STAGE ***
FIBIAS1 IN- 0 POLY(1) V21 1.4e-9 4e-5
VOSI_Neg 3 IN- 25E-6
H3 4 3 V24 3
G4 0 5 4 0 2e-3
R10 5 0 500
D7 5 9 D
D8 10 5 D
V7 10 VNEGx 1.8
V8 VPOSx 9 1.1
E8 22 0 5 0 1
FIBIAS2 IN+ 0 POLY(1) V23 0.8e-9 4e-5
VOSI_Pos IN+ 6 24E-6
H5 7 6 V26 3
G5 0 8 7 0 2e-3
R11 8 0 500
D9 8 11 D
D10 12 8 D
V9 12 VNEGx 1.8
V10 VPOSx 11 1.1
E9 15 0 8 0 1
G1 0 IN+ 13 14 .0025e-9
R13 IN+ 13 10e9
R14 13 IN- 10e9
R15 +Vs 14 10e9
R16 14 -Vs 10e9
G2 0 IN- 13 14 .0025e-9
*
*** PREAMPLIFIER STAGE ***
Q1 Pos_Fdbk 15 RG+ 0 NPN
C4 RG+ 0 .135e-12
R6 RG+ 17 24735
VCS2 noninverting_out 17 0
I1 VBIAS Pos_Fdbk 20E-6
R23 Pos_Fdbk VBIAS 1e9
G7 0 18 VBIAS Pos_Fdbk 1
R8 18 0 10E9
C2 noninverting_out Pos_Fdbk 9.2e-12
R25 19 18 100
D5 19 20 D
D6 21 19 D
V5 21 VNEGx 0.3
V6 VPOSx 20 2.1
Q2 Inv_Fdbk 22 RG- 0 NPN
C3 RG- 0 .200e-12
R5 RG- 24 24735
VCS1 Inverting_Out 24 0
I2 VBIAS Inv_Fdbk 20E-6
R18 VBIAS Inv_Fdbk 1e9
G6 0 25 VBIAS Inv_Fdbk 1
R7 25 0 10E9
C1 Inverting_Out Inv_Fdbk 9.235e-12
R24 26 25 100
D3 26 27 D
D4 28 26 D
V3 28 VNEGx 0.3
V4 VPOSx 27 2.1
V1 VBIAS VPOSx 20
D40 Inv_Fdbk VBIAS D
D41 Pos_Fdbk VBIAS D
*
*** SUBTRACTOR STAGE ***
E4 Inverting_Out 0 26 0 1
E5 noninverting_out 0 19 0 1
R1 31 sub_neg 10E3
R2 sub_neg 24 10E3
R3 sub_pos 17 10001
R4 REF sub_pos 10E3
VCS3 sub_out 31 0
G8 0 sub_out sub_pos sub_neg 1
R9 sub_out 0 10E9
D13 REF 38 D
D14 39 REF D
V13 39 VNEGx .3
V14 VPOSx 38 .3
D15 sub_pos 36 D
D16 37 sub_pos D
V15 37 VNEGx 0.9
V16 VPOSx 36 0.9
R22 sub_out_cl sub_out 100
D1 sub_out_cl 33 D
V2 32 33 1.15
D2 34 sub_out_cl D
V17 34 35 1.05
H6 VPOSx 32 POLY(1) VOSO 0 0 8000
H7 35 VNEGx POLY(1) VOSO 0 0 8000
H4 VX sub_out_cl V25 64
*
*** SLEW RATE AND OUTPUT STAGE ***
G11 0 VZ VX VY 1e-3
R26 VZ 0 100E6
D21 40 VZ DSLEWP
D22 40 0 DSLEWN
G12 0 VY VZ 0 1E-4
C7 VY 0 1E-9
R30 VY 0 10e9
G9 0 41 VY 42 1
R12 41 0 1e10
C5 41 0 1.4e-7
G10 0 42 41 0 .002
R17 42 0 500
C6 42 0 700e-12
R27 43 42 0.1
D11 43 45 D
D12 46 43 D
V11 46 47 1.05
V12 44 45 1.15
H1 VPOSx 44 POLY(1) VOSO 0 0 8000
H2 47 VNEGx POLY(1) VOSO 0 0 8000
VOSO VOUT 43 300E-6
*
*** NOISE ***
V24 60 0 0
R19 60 0 .0166
D17 61 60 DN
V18 61 0 0.2
V26 62 0 0
R21 62 0 .0166
D18 63 62 DN
V19 63 0 0.2
V25 64 0 0
R20 64 0 .0166
D19 65 64 DN
V20 65 0 0.2
V21 70 0 0
R28 70 0 .0166
D38 71 70 DIN
V22 71 0 0.2
V23 72 0 0
R29 72 0 .0166
D39 73 72 DIN
V27 73 0 0.2
*
*** SUPPLY CURRENT AND BIASING ***
ISUP +Vs -Vs 800E-6
GSUP +Vs -Vs +Vs -Vs 1e-6
FSUP1 56 0 VOSO -1
D20 +Vs 90 D
D23 52 -Vs D
D24 56 90 DZ
D25 52 56 DZ
FSUP2 57 0 VCS1 1
D26 +Vs 91 D
D27 53 -Vs D
D28 57 91 DZ
D29 53 57 DZ
FSUP3 58 0 VCS2 1
D30 +Vs 92 D
D31 54 -Vs D
D32 58 92 DZ
D33 54 58 DZ
FSUP4 59 0 VCS3 1
D34 +Vs 93 D
D35 55 -Vs D
D36 59 93 DZ
D37 55 59 DZ
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
*
*
.MODEL NPN NPN
.MODEL D D(IS=1e-15 N=0.1)
.MODEL DN D(IS=1e-15 KF=3e-6)
.MODEL DIN D(IS=1e-15 KF=5e1 AF=1.5)
.MODEL DZ D(IS=1e-15 BV=50 RS=1)
.MODEL DSLEWP D(IS=1e-15 BV=19.5 RS=0.1)
.MODEL DSLEWN D(IS=1e-15 BV=19.5 RS=0.1)
*
.ENDS AD8221
*
* AD8222 SPICE Macro-model
* Revision History:
* A (10/2010) - PRB (The AD8222 is a dual of the AD8221, this SPICE model
* is a single channel)
* C (09/2014) - SH (Improved convergence of input clamps, added 1/f noise and current noise, removed LIMIT statement,
* load currents from output and preamplifier are reflected in the supplies, bug fixes, organized netlist)
* Copyright 2010, 2014 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters modeled include:
* Gain error, Vos, Ibias
* Bandwidth
* Voltage and current noise with 1/f noise
* CMRR vs frequency
* Supply current incl preamp and output load currents
* Output clamp vs load
* Input common-mode range vs output swing limitations
* Slew Rate
* Pulse response vs cap load
*
* END Notes
*
* Node assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8222 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
** INPUT STAGE ***
FIBIAS1 IN- 0 POLY(1) V21 1.4e-9 4e-5
VOSI_Neg 3 IN- 25E-6
H3 4 3 V24 3
G4 0 5 4 0 2e-3
R10 5 0 500
D7 5 9 D
D8 10 5 D
V7 10 VNEGx 1.8
V8 VPOSx 9 1.1
E8 22 0 5 0 1
FIBIAS2 IN+ 0 POLY(1) V23 0.8e-9 4e-5
VOSI_Pos IN+ 6 24E-6
H5 7 6 V26 3
G5 0 8 7 0 2e-3
R11 8 0 500
D9 8 11 D
D10 12 8 D
V9 12 VNEGx 1.8
V10 VPOSx 11 1.1
E9 15 0 8 0 1
G1 0 IN+ 13 14 .0025e-9
R13 IN+ 13 10e9
R14 13 IN- 10e9
R15 +Vs 14 10e9
R16 14 -Vs 10e9
G2 0 IN- 13 14 .0025e-9
*
*** PREAMPLIFIER STAGE ***
Q1 Pos_Fdbk 15 RG+ 0 NPN
C4 RG+ 0 .135e-12
R6 RG+ 17 24735
VCS2 noninverting_out 17 0
I1 VBIAS Pos_Fdbk 20E-6
R23 Pos_Fdbk VBIAS 1e9
G7 0 18 VBIAS Pos_Fdbk 1
R8 18 0 10E9
C2 noninverting_out Pos_Fdbk 9.2e-12
R25 19 18 100
D5 19 20 D
D6 21 19 D
V5 21 VNEGx 0.3
V6 VPOSx 20 2.1
Q2 Inv_Fdbk 22 RG- 0 NPN
C3 RG- 0 .200e-12
R5 RG- 24 24735
VCS1 Inverting_Out 24 0
I2 VBIAS Inv_Fdbk 20E-6
R18 VBIAS Inv_Fdbk 1e9
G6 0 25 VBIAS Inv_Fdbk 1
R7 25 0 10E9
C1 Inverting_Out Inv_Fdbk 9.235e-12
R24 26 25 100
D3 26 27 D
D4 28 26 D
V3 28 VNEGx 0.3
V4 VPOSx 27 2.1
V1 VBIAS VPOSx 20
D40 Inv_Fdbk VBIAS D
D41 Pos_Fdbk VBIAS D
*
*** SUBTRACTOR STAGE ***
E4 Inverting_Out 0 26 0 1
E5 noninverting_out 0 19 0 1
R1 31 sub_neg 10E3
R2 sub_neg 24 10E3
R3 sub_pos 17 10001
R4 REF sub_pos 10E3
VCS3 sub_out 31 0
G8 0 sub_out sub_pos sub_neg 1
R9 sub_out 0 10E9
D13 REF 38 D
D14 39 REF D
V13 39 VNEGx .3
V14 VPOSx 38 .3
D15 sub_pos 36 D
D16 37 sub_pos D
V15 37 VNEGx 0.9
V16 VPOSx 36 0.9
R22 sub_out_cl sub_out 100
D1 sub_out_cl 33 D
V2 32 33 1.15
D2 34 sub_out_cl D
V17 34 35 1.05
H6 VPOSx 32 POLY(1) VOSO 0 0 8000
H7 35 VNEGx POLY(1) VOSO 0 0 8000
H4 VX sub_out_cl V25 64
*
*** SLEW RATE AND OUTPUT STAGE ***
G11 0 VZ VX VY 1e-3
R26 VZ 0 100E6
D21 40 VZ DSLEWP
D22 40 0 DSLEWN
G12 0 VY VZ 0 1E-4
C7 VY 0 1E-9
R30 VY 0 10e9
G9 0 41 VY 42 1
R12 41 0 1e10
C5 41 0 1.4e-7
G10 0 42 41 0 .002
R17 42 0 500
C6 42 0 700e-12
R27 43 42 0.1
D11 43 45 D
D12 46 43 D
V11 46 47 1.05
V12 44 45 1.15
H1 VPOSx 44 POLY(1) VOSO 0 0 8000
H2 47 VNEGx POLY(1) VOSO 0 0 8000
VOSO VOUT 43 300E-6
*
*** NOISE ***
V24 60 0 0
R19 60 0 .0166
D17 61 60 DN
V18 61 0 0.2
V26 62 0 0
R21 62 0 .0166
D18 63 62 DN
V19 63 0 0.2
V25 64 0 0
R20 64 0 .0166
D19 65 64 DN
V20 65 0 0.2
V21 70 0 0
R28 70 0 .0166
D38 71 70 DIN
V22 71 0 0.2
V23 72 0 0
R29 72 0 .0166
D39 73 72 DIN
V27 73 0 0.2
*
*** SUPPLY CURRENT AND BIASING ***
ISUP +Vs -Vs 800E-6
GSUP +Vs -Vs +Vs -Vs 1e-6
FSUP1 56 0 VOSO -1
D20 +Vs 90 D
D23 52 -Vs D
D24 56 90 DZ
D25 52 56 DZ
FSUP2 57 0 VCS1 1
D26 +Vs 91 D
D27 53 -Vs D
D28 57 91 DZ
D29 53 57 DZ
FSUP3 58 0 VCS2 1
D30 +Vs 92 D
D31 54 -Vs D
D32 58 92 DZ
D33 54 58 DZ
FSUP4 59 0 VCS3 1
D34 +Vs 93 D
D35 55 -Vs D
D36 59 93 DZ
D37 55 59 DZ
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
*
*
.MODEL NPN NPN
.MODEL D D(IS=1e-15 N=0.1)
.MODEL DN D(IS=1e-15 KF=3e-6)
.MODEL DIN D(IS=1e-15 KF=5e1 AF=1.5)
.MODEL DZ D(IS=1e-15 BV=50 RS=1)
.MODEL DSLEWP D(IS=1e-15 BV=19.5 RS=0.1)
.MODEL DSLEWN D(IS=1e-15 BV=19.5 RS=0.1)
*
.ENDS AD8222
*$
* AD8224 SPICE Macro-model 09/09, Rev. C
* PRB IAP ADI
*
* Revision History:
*
* Node assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8224 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
** INPUT STAGE
R1 N009 N008 20E3
R2 N008 Inverting_Out 20E3
R3 N013 noninverting_out 20.002e3
R4 REF N013 20e3
R5 RG- N003 24700
R6 RG+ N012 24724
D3 N003 P001 D
D4 P002 N003 D
V3 P002 VNEGx 0.84
V4 VPOSx P001 2.35
D5 N012 P003 D
D6 P004 N012 D
V5 P004 VNEGx 0.84
V6 VPOSx P003 2.35
D7 N005 P005 D
D8 P006 N005 D
V7 P006 VNEGx -10
V8 VPOSx P005 -10
D9 N019 P007 D
D10 P008 N019 D
V9 P008 VNEGx -10
V10 VPOSx P007 -10
D11 N009 P009 D
D12 P010 N009 D
V11 P010 N016 1.03
V12 N010 P009 1
D13 REF P011 D
D14 P012 REF D
V13 P012 VNEGx .3
V14 VPOSx P011 .3
D15 N013 P013 D
D16 P014 N013 D
V15 P014 VNEGx 0.6
V16 VPOSx P013 0.6
E4 Inverting_Out 0 N003 0 1
E5 noninverting_out 0 N012 0 1
Q1 Inv_Fdbk N002 RG- 0 PNP
Q2 Pos_Fdbk N015 RG+ 0 PNP
V1 VBIAS -Vs -10
I1 Pos_Fdbk VBIAS 9E-6
I2 Inv_Fdbk VBIAS 9E-6
C1 N003 Inv_Fdbk 3.8035e-12
C2 N012 Pos_Fdbk 3.8e-12
E8 N002 0 N005 0 1
E9 N015 0 N019 0 1
VOSI_Neg N004 IN- 25E-6
VOSI_Pos IN+ N017 24E-6
VOSO VOUT N011 300E-6
C3 RG- 0 .200e-12
C4 RG+ 0 .135e-12
I23 IN- 0 3E-12
I24 IN+ 0 3.2E-12
G1 0 IN+ N020 N021 .7e-9
R13 IN+ N020 10e9
R14 N020 IN- 10e9
R15 +Vs N021 10e9
R16 N021 -Vs 10e9
G2 0 IN- N020 N021 .7e-9
E10 VPOSx 0 +Vs 0 1
I3 +Vs -Vs 725E-6
G3 +Vs -Vs +Vs -Vs 1e-6
E11 VNEGx 0 -Vs 0 1
R17 VBIAS Inv_Fdbk 10e9
R18 Pos_Fdbk VBIAS 10e9
H3 N006 N004 V24 14
V24 N001 0 0
R19 N001 0 .0166
H4 N011 N009 V25 100
V25 N007 0 0
R20 N007 0 .0166
H5 N018 N017 V26 14
V26 N014 0 0
R21 N014 0 .0166
G4 0 N005 N006 N005 1E-3
G5 0 N019 N018 N019 1E-3
G6 0 N003 VBIAS Inv_Fdbk 1
G7 0 N012 VBIAS Pos_Fdbk 1
G8 0 N009 N013 N008 1
R10 N005 0 10e9
R7 N003 0 10E9
R11 N019 0 10E9
R8 N012 0 10E9
R9 N009 0 10E9
*C5 N008 N009 8e-12
H1 VPOSx N010 POLY(1) VOSO 0 0 8000
H2 N016 VNEGx POLY(1) VOSO 0 0 8000
* MODELS USED
*
.model D D
.model PNP PNP (BF=10E5 VAF=20000)
.ENDS AD8224
* AD8226 SPICE Macro-model
* Copyright 2012 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8226 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
** INPUT STAGE
R1 N009 N008 50E3
R2 N008 Inverting_Out 50E3
R3 N013 noninverting_out 50000
R4 REF N013 50k
R5 RG- N003 24700
R6 RG+ N012 24724
D3 N003 P001 D
D4 P002 N003 D
V3 P002 VNEGx 0.84
V4 VPOSx P001 .61
D5 N012 P003 D
D6 P004 N012 D
V5 P004 VNEGx 0.84
V6 VPOSx P003 .61
D7 N005 P005 D
D8 P006 N005 D
V7 P006 VNEGx 0
V8 VPOSx P005 0
D9 N019 P007 D
D10 P008 N019 D
V9 P008 VNEGx 0
V10 VPOSx P007 0
D11 N009 P009 D
D12 P010 N009 D
V11 P010 N016 0.750
V12 N010 P009 0.83
D13 REF P011 D
D14 P012 REF D
V13 P012 VNEGx .3
V14 VPOSx P011 .3
D15 N013 P013 D
D16 P014 N013 D
V15 P014 VNEGx 0.6
V16 VPOSx P013 0.6
E4 Inverting_Out 0 N003 0 1
E5 noninverting_out 0 N012 0 1
Q1 Inv_Fdbk N002 RG- 0 PNP
Q2 Pos_Fdbk N015 RG+ 0 PNP
V1 VBIAS -Vs -10
I1 Pos_Fdbk VBIAS 2E-6
I2 Inv_Fdbk VBIAS 2E-6
C1 N003 Inv_Fdbk 4.035e-12
C2 N012 Pos_Fdbk 4.0e-12
E8 N002 0 N005 0 1
E9 N015 0 N019 0 1
VOSI_Neg N004 IN- 25E-6
VOSI_Pos IN+ N017 24E-6
VOSO VOUT N011 300E-6
C3 RG- 0 .242e-12
C4 RG+ 0 .1635e-12
I23 IN- 0 -22.3E-9
I24 IN+ 0 -22E-9
G1 0 IN+ N020 N021 .7e-9
R13 IN+ N020 10e9
R14 N020 IN- 10e9
R15 +Vs N021 10e9
R16 N021 -Vs 10e9
G2 0 IN- N020 N021 .7e-9
E10 VPOSx 0 +Vs 0 1
I3 +Vs -Vs 300E-6
G3 +Vs -Vs +Vs -Vs 1e-6
E11 VNEGx 0 -Vs 0 1
R17 VBIAS Inv_Fdbk 10e9
R18 Pos_Fdbk VBIAS 10e9
H3 N006 N004 V24 14
V24 N001 0 0
R19 N001 0 .0166
H4 N011 N009 V25 100
V25 N007 0 0
R20 N007 0 .0166
H5 N018 N017 V26 14
V26 N014 0 0
R21 N014 0 .0166
G4 0 N005 N006 N005 1E-3
G5 0 N019 N018 N019 1E-3
G6 0 N003 VBIAS Inv_Fdbk 1
G7 0 N012 VBIAS Pos_Fdbk 1
G8 0 N009 N013 N008 1
R10 N005 0 10e9
R7 N003 0 10E9
R11 N019 0 10E9
R8 N012 0 10E9
R9 N009 0 10E9
H1 VPOSx N010 POLY(1) VOSO 0 0 8000
H2 N016 VNEGx POLY(1) VOSO 0 0 8000
* MODELS USED
*
.model D D
.model PNP PNP (BF=10E5 VAF=20000)
.ENDS AD8226
* AD8227 SPICE Macro-model
* Revision History:
* 1.0 (09/2010) - PRB (Original Model)
* 1.1 (08/2012) - PRB (Updated to new header style)
* 2.0 (12/2014) - SH (Bug fixes and major performance improvements. Added slew rate, current noise and 1/f noise.
* Load currents reflected in supply. Organized and commented netlist.)
* Copyright 2010, 2014 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters Modeled Include:
* Gain error, Vos, Ibias
* Bandwidth
* Voltage and current noise with 1/f noise
* CMRR vs frequency
* Supply current incl preamp and output load currents
* Output clamp vs load
* Input range and internal voltage limitations
* Slew Rate
* Pulse response vs cap load
* Input impedance
*
* Typical Specifications from ±15V Table Used in Model
*
* END Notes
*
* Node Assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8227 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
*** INPUT STAGE ***
FIBIAS1 IN- 0 POLY(1) V21 -19.5E-9 1.0E-4
H3 4 IN- V24 21.265
G4 0 5 4 0 257.8E-6
R10 5 0 3878.788
D7 5 9 D
D8 10 5 D
V7 10 VNEGx -0.06
V8 VPOSx 9 0.84
E8 22 0 5 0 1
FIBIAS2 IN+ 0 POLY(1) V23 -20.5E-9 1.0E-4
VOSI 7 IN+ -100.0E-6
G5 0 8 7 0 257.8E-6
R11 8 0 3878.788
D9 8 9 D
D10 10 8 D
E9 15 0 8 0 1
G1 IN+ 0 POLY(2) (IN+, VMID) (IN+, IN-) 0 1.25E-9 1.25E-9
G2 IN- 0 POLY(2) (IN-, VMID) (IN-, IN+) 0 1.25E-9 1.25E-9
CCM1 IN+ 0 1.0E-12
CCM2 IN- 0 1.0E-12
CDIFF IN+ IN- 1.5E-12
*
*** PREAMPLIFIER STAGE ***
GP1 16 Pos_Fdbk 16 15 115.0E-6
VSH1 RG+ 16 0.553
C4 RG+ 0 31.84E-12
R6 RG+ 17 8010.4
VCS2 noninverting_out 17 0
I1 Pos_Fdbk VBIAS 10.0E-6
R23 Pos_Fdbk VBIAS 1E9
G7 0 18 VBIAS Pos_Fdbk 1
R8 18 0 10E9
C2 noninverting_out Pos_Fdbk 18.17E-12
R25 19 18 100
D5 19 20 D
D6 21 19 D
V5 21 VNEGx 0.35
V6 VPOSx 20 0.15
GP2 23 Inv_Fdbk 23 22 115.0E-6
VSH2 RG- 23 0.553
C3 RG- 0 31.74E-12
R5 RG- 24 8010.4
VCS1 Inverting_Out 24 0
I2 Inv_Fdbk VBIAS 10.0E-6
R18 VBIAS Inv_Fdbk 1E9
G6 0 25 VBIAS Inv_Fdbk 1
R7 25 0 10E9
C1 Inverting_Out Inv_Fdbk 18.26E-12
R24 26 25 100
D3 26 20 D
D4 21 26 D
V1 -Vs VBIAS 20
D40 Inv_Fdbk VBIAS D
D41 Pos_Fdbk VBIAS D
D42 VBIAS Inv_Fdbk D
D43 VBIAS Pos_Fdbk D
*
*** SUBTRACTOR STAGE ***
E4 Inverting_Out 0 26 0 1
E5 noninverting_out 0 19 0 1
R1 31 sub_neg 50000.0
R2 sub_neg 24 9998.05
R3 sub_pos 17 9997.45
R4 REF sub_pos 50000.0
VCS3 sub_out 31 0
G8 0 sub_out sub_pos sub_neg 1E3
R9 sub_out 0 10E6
D13 REF 38 D
D14 39 REF D
V13 39 VNEGx 0.3
V14 VPOSx 38 0.3
D15 sub_pos 36 D
D16 37 sub_pos D
V15 37 VNEGx 0.05
V16 VPOSx 36 0.95
R22 sub_out_cl sub_out 100
D1 sub_out_cl 45 D
D2 46 sub_out_cl D
H4 VX sub_out_cl V25 294.46
*
*** SLEW RATE AND OUTPUT STAGE ***
G11 0 VZ VX VY 1e-3
R26 VZ 0 100E6
D21 40 VZ DSLEWP
D22 40 0 DSLEWN
G12 0 VY VZ 0 40.0E-6
C7 VY 0 1E-9
R30 VY 0 10e9
G9 0 41 VY 42 1
R12 41 0 1e10
C5 41 0 851.7E-9
G10 0 42 41 0 1.0E-3
R17 42 0 1000.0
C6 42 0 340.7E-12
R27 43 42 0.1
D11 43 45 D
D12 46 43 D
H1 VPOSx 45 POLY(1) VSRC 0.15 0 14793
H2 46 VNEGx POLY(1) VSNK 0.15 0 14793
VOSO VOUT 43 464.0E-6
*
*** NOISE ***
V24 60 0 0
R19 60 0 .0166
D17 61 60 DN
V18 61 0 0.2
V25 64 0 0
R20 64 0 .0166
D19 65 64 DN
V20 65 0 0.202
V21 70 0 0
R28 70 0 .0166
D38 71 70 DIN
V22 71 0 0.2
V23 72 0 0
R29 72 0 .0166
D39 73 72 DIN
V27 73 0 0.2
*
*** SUPPLY CURRENT AND BIASING ***
GSUP +Vs -Vs POLY(1) (+Vs,-Vs) 290.5E-6 916.0E-9
FSUP1 56 0 VOSO -1
D24 90 +Vs DZ
D25 -Vs 52 DZ
D20 90 95 D
VSRC 95 56 0
D23 55 52 D
VSNK 56 55 0
FSUP2 57 0 VCS1 1
D26 90 57 D
D27 57 52 D
FSUP3 58 0 VCS2 1
D30 90 58 D
D31 58 52 D
FSUP4 59 0 VCS3 1
D34 90 59 D
D35 59 52 D
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
EMID VMID 0 POLY(2) (+Vs, 0) (-Vs, 0) 0 0.5 0.5
*
*
.MODEL D D(IS=1e-15 N=0.1 RS=1e-3)
.MODEL DN D(IS=1e-15 KF=2.946E-7)
.MODEL DIN D(IS=1e-15 KF=2.592E-6)
.MODEL DZ D(IS=1e-15 BV=50 RS=1)
.MODEL DSLEWP D(IS=1e-15 BV=19.5 RS=0.1)
.MODEL DSLEWN D(IS=1e-15 BV=19.5 RS=0.1)
*
*
.ENDS AD8227
*
* AD8418A MACROMODEL
* Copyright 2013 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature
* PSRR
* Parameters modeled include:
* Offset Voltage
* Bias Current vs. Common Mode Voltage
* DC Transfer Characteristic
* DC CMRR
* Gain vs. Frequency
* CMRR vs. Frequency
* Spectral Noise
* Slew Rate
* Pulse Response
* Capacitive Loading Effects
* Common-Mode Step Response
* END Notes
*
************************
.SUBCKT AD8418A VIN- GND REF2 VOUT VS REF1 VIN+
*#ASSOC Category="Current Sense Amplifiers" Symbol=ADICurSense7p Mapping=1,2,5,7,6,3,4
D24 36 37 DIODE
V14 0 38 dc 2.35
D26 38 2 DIODE
D25 2 VIN- DIODE
V12 0 36 dc 2.35
D23 37 VIN+ DIODE
R9 35 REF2x 100000
R8 35 REF1x 100000
RRef2 5 REF2 100000
RRef1 5 REF1 100000
I6 4 0 dc 8e-005
V9 34 0 dc 1.5
D22 34 4 DIODE
D21 VIN+ 4 DIODE
R6 VIN+ 35 720000
R5 VIN- 0 1575000
Lcm 18 33 0.0027
D19 29 6 DIODE
D13 28 29 DIODE
D18 25 20 DIODE
D17 20 27 DIODE
D16 27 26 DIODE
D15 26 12 DIODE
D14 12 28 DIODE
D12 8 25 DIODE
D6 9 8 DIODE
D5 10 9 DIODE
D4 11 10 DIODE
D3 6 11 DIODE
R14 0 20 1
GI11 0 20 VIN+ 0 1
V13 V85 22 dc 1.5
D10 20 22 DIODE
V7 21 VNEG4 dc 1.5
D9 21 20 DIODE
R13 0 6 1
GI10 0 6 VIN- 0 1
V4 19 VNEG4 dc 1.5
D8 19 6 DIODE
V2 V85 17 dc 1.5
D7 6 17 DIODE
EV8 Vsl+in 0 20 0 1
EV6 7 0 6 0 1
Vos 3 7 dc 0.0002
R7 Vo1 0 1000000000
R4 1 5 1450000
R3 Vsl+out 1 75000
R2 33 Vo1 1500000
Rcm 3 18 75007.5
GI1 0 Vo1 1 33 1
* Noise
V11 15 0 dc 0
Rn 16 15 0.00166
Vn 16 0 dc 0
Hn 32 Vo1 Vn 620
V10 0 30 dc 100
D20 30 14 DIODE
V19 0 24 dc -100
D11 14 24 DIODE
V5 VS 13 dc 0.85
D1 VOUT 13 DIODE
V1 23 GND dc 0.85
D2 23 VOUT DIODE
* Gain stage
Rg2 VOUT 0 454.5
Cg2 VOUT 0 1.4e-009
GIg2 0 VOUT 14 0 0.0022
Cg1 0 14 6.37e-007
Rg1 0 14 1000000
GIg1 0 14 31 VOUT 1
* Slew Rate
GIsl 0 31 VALUE={LIMIT(1*V(32,31),0.1,-0.1)}
Rsl 31 0 1000000000
Csl 31 0 1e-007
* Supplies
EV20 REF2x 0 REF2 0 1
EV18 REF1x 0 REF1 0 1
V16 0 VNEG4 dc 4
V15 V85 0 dc 85
I4 VS GND dc 0.002
* Common-Mode Step Response
R1 Vsl+out 0 1000000000
C1 Vsl+out 0 1e-009
GI2 0 Vsl+out VALUE={LIMIT(1*V(Vsl+in,Vsl+out),15,-15)}
.model DIODE D(Is=1E-14)
.ENDS AD8418A
* AD8421 SPICE Macro-model
* Revision History:
* 0(09/2012) - MI Initial Rev
* A(04/2013) - SH (Updated to new header style. Modified diamond plot and bandwidth parameters)
* Copyright 2012 by Analog Devices, Inc.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters modeled include:
* Output swing vs Common-mode Voltage
* Supply current vs power supplies
* DC errors, Vos, Ibias
* Noise
* Bandwidth
* Slew rate
* CMRR vs frequency
* Small signal pulse response
*
* Supply range:
* Single Supply: 5V to 36V
* Dual Supplies: +/-2.5V to +/-18V
*
* END Notes
*
* Node assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8421 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
R1 sub_out sub_neg 10e3
R2 sub_neg Inverting_Out 10e3
R3 sub_pos Non-inverting_Out 10001.8
R4 REF sub_pos 10e3
R5 RG- N004 4.96e3
R6 RG+ N016 4.95e3
D3 N005 P001 D
D4 P002 N005 D
V3 P002 VNEGx 2
V4 VPOSx P001 4.4
D5 N023 P003 D
D6 P004 N023 D
V5 P004 VNEGx 2
V6 VPOSx P003 4.4
D7 N008 P005 D
D8 P006 N008 D
V7 P006 VNEGx 2.9
V8 VPOSx P005 2.4
D9 N027 P007 D
D10 P008 N027 D
V9 P008 VNEGx 2.9
V10 VPOSx P007 2.4
D11 N015 P009 D
D12 P010 N015 D
V11 P010 N028 1.8
V12 N013 P009 2.2
D13 REF P011 D
D14 P012 REF D
V13 P012 VNEGx .3
V14 VPOSx P011 .3
D15 sub_pos P013 D
D16 P014 sub_pos D
V15 P014 VNEGx 1.8
V16 VPOSx P013 1.8
E4 Inverting_Out 0 N005 0 1
E5 Non-inverting_Out 0 N023 0 1
V1 VBIAS1 +Vs 5
I1 VBIAS2 Pos_Fdbk 200e-6
I2 VBIAS1 Inv_Fdbk 200e-6
C1 N011 Inv_Fdbk 4.25e-12
C2 N022 Pos_Fdbk 4.3e-12
E8 N003 0 N008 0 1
E9 N021 0 N027 0 1
VOSI_Neg N006 IN- 0
VOSI_Pos N024 IN+ 60e-6
VOSO VOUT N015 -1.65e-3
C3 RG- 0 4.3e-12
C4 RG+ 0 4.15e-12
I23 IN- 0 -1.5e-9
I24 IN+ 0 0.5e-9
G1 0 IN+ N029 N030 -0.033e-9
R13 IN+ N029 15e9
R14 N029 IN- 15e9
R15 +Vs N030 10e9
R16 N030 -Vs 10e9
G2 0 IN- N029 N030 -0.033e-9
E10 VPOSx 0 +Vs 0 1
I3 +Vs -Vs 2.1e-3
G3 +Vs -Vs +Vs -Vs 5e-6
E11 VNEGx 0 -Vs 0 1
H1 VPOSx N013 POLY(1) VOSO 0 -29.4 588.5 -6078
H2 N028 VNEGx POLY(1) VOSO 0 50 -1882 31700
H3 N009 N006 V24 1.95
V24 N001 0 0
R19 N001 0 .0166
H4 VX N014 V25 47.34
V25 N010 0 0
R20 N010 0 .0166
H5 N025 N024 V26 1.95
V26 N017 0 0
R21 N017 0 .0166
G4 0 N007 N009 N007 1
G5 0 N026 N025 N026 1
G6 0 N004 VBIAS1 Inv_Fdbk 1
G7 0 N016 VBIAS2 Pos_Fdbk 1
G8 0 sub_out sub_pos sub_neg 1
R10 N007 0 10e9
R7 N004 0 10e9
R11 N026 0 10E9
R8 N016 0 10e9
R9 sub_out 0 10E9
Q1 Pos_Fdbk N021 RG+ 0 NPN
Q2 Inv_Fdbk N003 RG- 0 NPN
G9 0 N018 VY N019 1
G10 0 N019 N018 0 8.32e-3
R12 N018 0 1e9
R17 N019 0 120.13
C5 N018 0 10E-9
C6 N019 0 300e-12
C8 VY 0 1e-9
G11 0 VY VALUE = { LIMIT( 1*V(VX,VY), .035, -.035) }
R22 VY 0 1e9
R18 VBIAS1 Inv_Fdbk 1e9
R23 Pos_Fdbk VBIAS2 1e9
D1 N014 P015 D
V2 VPOSx P015 2.2
D2 P016 N014 D
V17 P016 VNEGx 1.8
I4 +Vs 0 -435e-6
R26 N016 N022 1.5k
R27 N004 N011 1.5k
V18 N031 -Vs 5
E1 VBIAS2 N031 +Vs -Vs 1
R25 N007 N008 1
R28 N026 N027 1
R29 N016 N023 1
R30 N004 N005 1
R31 sub_out N014 1
R32 N019 N015 0.1
V19 N020 0 0.1
D17 N020 N017 DNoise
V20 N002 0 0.1
D18 N002 N001 DNoise
V21 N012 0 0.12
D19 N012 N010 DNoise
* MODELS USED
*
.model D D
.model DNoise D (Is=1e-11, kf=8e-9)
.model NPN NPN
.ENDS AD8421
* AD8422 SPICE Macro-model
* Copyright 2015 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters Modeled Include:
* Gain error, Vos, Ibias
* Bandwidth
* Voltage and current noise with 1/f noise
* CMRR vs frequency
* Supply current incl preamp and output load currents
* Output clamp vs load
* Input range and internal voltage limitations
* Slew Rate
* Pulse response vs cap load
* Input impedance
*
* Typical Specifications from ±15V Table Used in Model
*
* END Notes
*
* Node Assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8422 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
*** INPUT STAGE ***
FIBIAS1 IN- 0 POLY(1) V21 600.0E-12 9.0E-5
H3 4 IN- V24 6.645
G4 0 5 4 0 2.64E-3
R10 5 0 378.788
D7 5 9 D
D8 10 5 D
V7 10 VNEGx 1.24
V8 VPOSx 9 1.24
E8 22 0 5 0 1
FIBIAS2 IN+ 0 POLY(1) V23 400.0E-12 9.0E-5
VOSI 7 IN+ -25.0E-6
G5 0 8 7 0 2.64E-3
R11 8 0 378.788
D9 8 9 D
D10 10 8 D
E9 15 0 8 0 1
G1 IN+ 0 POLY(2) (IN+, VMID) (IN+, IN-) 0 2.5E-12 5.0E-12
G2 IN- 0 POLY(2) (IN-, VMID) (IN-, IN+) 0 2.5E-12 5.0E-12
CCM1 IN+ 0 1.0E-12
CCM2 IN- 0 1.0E-12
CDIFF IN+ IN- 1.5E-12
*
*** PREAMPLIFIER STAGE ***
GN1 Pos_Fdbk 16 15 16 778.8E-6
VSH1 RG+ 16 -0.474
C4 RG+ 0 3.688E-12
R6 RG+ 17 9802.94
VCS2 noninverting_out 17 0
I1 VBIAS Pos_Fdbk 20.0E-6
R23 Pos_Fdbk VBIAS 1E9
G7 0 18 VBIAS Pos_Fdbk 1
R8 18 0 10E9
C2 noninverting_out Pos_Fdbk 10.19E-12
R25 19 18 100
D5 19 20 D
D6 21 19 D
V5 21 VNEGx 0.19
V6 VPOSx 20 0.19
GN2 Inv_Fdbk 23 22 23 778.8E-6
VSH2 RG- 23 -0.474
C3 RG- 0 3.692E-12
R5 RG- 24 9802.94
VCS1 Inverting_Out 24 0
I2 VBIAS Inv_Fdbk 20.0E-6
R18 VBIAS Inv_Fdbk 1E9
G6 0 25 VBIAS Inv_Fdbk 1
R7 25 0 10E9
C1 Inverting_Out Inv_Fdbk 10.31E-12
R24 26 25 100
D3 26 20 D
D4 21 26 D
V1 VBIAS +Vs 20
D40 Inv_Fdbk VBIAS D
D41 Pos_Fdbk VBIAS D
D42 VBIAS Inv_Fdbk D
D43 VBIAS Pos_Fdbk D
*
*** SUBTRACTOR STAGE ***
E4 Inverting_Out 0 26 0 1
E5 noninverting_out 0 19 0 1
R1 31 sub_neg 10000.0
R2 sub_neg 24 9999.05
R3 sub_pos 17 9998.85
R4 REF sub_pos 10000.0
VCS3 sub_out 31 0
G8 0 sub_out sub_pos sub_neg 1E3
R9 sub_out 0 10E6
D13 REF 38 D
D14 39 REF D
V13 39 VNEGx 0.3
V14 VPOSx 38 0.3
D15 sub_pos 36 D
D16 37 sub_pos D
V15 37 VNEGx 0.05
V16 VPOSx 36 1.05
R22 sub_out_cl sub_out 100
D1 sub_out_cl 45 D
D2 46 sub_out_cl D
H4 VX sub_out_cl V25 71.74
*
*** SLEW RATE AND OUTPUT STAGE ***
G11 0 VZ VX VY 1e-3
R26 VZ 0 100E6
D21 40 VZ DSLEWP
D22 40 0 DSLEWN
G12 0 VY VZ 0 40.0E-6
C7 VY 0 1E-9
R30 VY 0 10e9
G9 0 41 VY 42 1
R12 41 0 1e10
C5 41 0 56.15E-9
G10 0 42 41 0 1.0E-3
R17 42 0 1000.0
C6 42 0 87.03E-12
R27 43 42 0.1
D11 43 45 D
D12 46 43 D
H1 VPOSx 45 POLY(1) VSRC 0.15 0 3E3
H2 46 VNEGx POLY(1) VSNK 0.15 0 3E3
VOSO VOUT 43 157.0E-6
*
*** NOISE ***
V24 60 0 0
R19 60 0 .0166
D17 61 60 DN
V18 61 0 0.2
V25 64 0 0
R20 64 0 .0166
D19 65 64 DN
V20 65 0 0.209
V21 70 0 0
R28 70 0 .0166
D38 71 70 DIN
V22 71 0 0.2
V23 72 0 0
R29 72 0 .0166
D39 73 72 DIN
V27 73 0 0.2
*
*** SUPPLY CURRENT AND BIASING ***
GSUP +Vs -Vs POLY(1) (+Vs,-Vs) 195.2E-6 1.0E-6
FSUP1 56 0 VOSO -1
D24 90 +Vs DZ
D25 -Vs 52 DZ
D20 90 95 D
VSRC 95 56 0
D23 55 52 D
VSNK 56 55 0
FSUP2 57 0 VCS1 1
D26 90 57 D
D27 57 52 D
FSUP3 58 0 VCS2 1
D30 90 58 D
D31 58 52 D
FSUP4 59 0 VCS3 1
D34 90 59 D
D35 59 52 D
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
EMID VMID 0 POLY(2) (+Vs, 0) (-Vs, 0) 0 0.5 0.5
*
*
.MODEL D D(IS=1e-15 N=0.1 RS=1e-3)
.MODEL DN D(IS=1e-15 KF=3.142E-7)
.MODEL DIN D(IS=1e-15 KF=6.221E-6)
.MODEL DZ D(IS=1e-15 BV=50 RS=1)
.MODEL DSLEWP D(IS=1e-15 BV=19.5 RS=0.1)
.MODEL DSLEWN D(IS=1e-15 BV=19.5 RS=0.1)
*
*
.ENDS AD8422
*$
* AD8429 SPICE Macro-model
* Generic Desc: 36V 1nV/rtHz Low Noise, Low Distortion, High Speed In-Amp
* Developed by: ADI - LPG
*
* Revision History:
* 4.0 (10/2012) - PRB (Updated to new header style)
* 5.0 (9/2014) - SH (Performance improvements, bug fixes, organized netlist)
* Copyright 2012, 2014 by Analog Devices.
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
* Temperature effects
* PSRR
*
* Parameters Modeled Include:
* Gain error, Vos, Ibias
* Bandwidth
* Voltage and current noise with 1/f noise
* CMRR vs frequency
* Supply current incl preamp and output load currents
* Output clamp vs load
* Input range and internal voltage limitations
* Slew Rate
* Pulse response vs cap load
* Input impedance
*
* Typical Specifications from ±15V Table Used in Model
*
* END Notes
*
* Node Assignments
* inverting input
* | RG
* | | RG
* | | | non_inverting input
* | | | | negative supply
* | | | | | ref
* | | | | | | output
* | | | | | | | positive supply
* | | | | | | | |
.SUBCKT AD8429 IN- RG- RG+ IN+ -Vs REF VOUT +Vs
*** INPUT STAGE ***
FIBIAS1 IN- 0 POLY(1) V21 165.0E-9 1.5E-3
H3 4 IN- V24 0.886
G4 0 5 4 0 148.5E-3
R10 5 0 6.734
D7 5 9 D
D8 10 5 D
V7 10 VNEGx 2.85
V8 VPOSx 9 2.55
E8 22 0 5 0 1
FIBIAS2 IN+ 0 POLY(1) V23 135.0E-9 1.5E-3
VOSI 7 IN+ -50.0E-6
G5 0 8 7 0 148.5E-3
R11 8 0 6.734
D9 8 11 D
D10 12 8 D
V9 12 VNEGx 2.85
V10 VPOSx 11 2.55
E9 15 0 8 0 1
G1 IN+ 0 13 14 666.7E-12
G2 IN- 0 13 14 666.7E-12
R13 IN+ 13 1.5E9
R14 13 IN- 1.5E9
R15 +Vs 14 10E9
R16 14 -Vs 10E9
CCM1 IN+ 0 3.0E-12
CCM2 IN- 0 3.0E-12
*
*** PREAMPLIFIER STAGE ***
GN1 Pos_Fdbk 16 15 16 11.78E-3
VSH1 RG+ 16 -0.744
IBOT1 RG+ -Vs 660.0E-6
C4 RG+ 0 7.65E-12
R6 RG+ 17 3003.9
VCS2 noninverting_out 17 0
I1 VBIAS Pos_Fdbk 660.0E-6
R23 Pos_Fdbk VBIAS 1E9
G7 0 18 VBIAS Pos_Fdbk 1
R8 18 0 10E9
C2 noninverting_out Pos_Fdbk 7.544E-12
R25 19 18 100
D5 19 20 D
D6 21 19 D
V5 21 VNEGx 2.4
V6 VPOSx 20 2.45
GN2 Inv_Fdbk 23 22 23 11.78E-3
VSH2 RG- 23 -0.744
IBOT2 RG- -Vs 660.0E-6
C3 RG- 0 16.37E-12
R5 RG- 24 3003.9
VCS1 Inverting_Out 24 0
I2 VBIAS Inv_Fdbk 660.0E-6
R18 VBIAS Inv_Fdbk 1E9
G6 0 25 VBIAS Inv_Fdbk 1
R7 25 0 10E9
C1 Inverting_Out Inv_Fdbk 16.6E-12
R24 26 25 100
D3 26 27 D
D4 28 26 D
V3 28 VNEGx 2.4
V4 VPOSx 27 2.45
V1 VBIAS +Vs 20
D40 Inv_Fdbk VBIAS D
D41 Pos_Fdbk VBIAS D
D42 VBIAS Inv_Fdbk D
D43 VBIAS Pos_Fdbk D
*
*** SUBTRACTOR STAGE ***
E4 Inverting_Out 0 26 0 1
E5 noninverting_out 0 19 0 1
R1 31 sub_neg 5000.0
R2 sub_neg 24 4999.079
R3 sub_pos 17 4998.763
R4 REF sub_pos 5000.0
VCS3 sub_out 31 0
G8 0 sub_out sub_pos sub_neg 1E3
R9 sub_out 0 10E6
D13 REF 38 D
D14 39 REF D
V13 39 VNEGx 0.3
V14 VPOSx 38 0.3
D15 sub_pos 36 D
D16 37 sub_pos D
V15 37 VNEGx 2.05
V16 VPOSx 36 0.25
R22 sub_out_cl sub_out 100
D1 sub_out_cl 33 D
V2 32 33 1.15
D2 34 sub_out_cl D
V17 34 35 1.75
H6 VPOSx 32 POLY(1) VOSO 0 0 2041
H7 35 VNEGx POLY(1) VOSO 0 0 2041
H4 VX sub_out_cl V25 40.13
*
*** SLEW RATE AND OUTPUT STAGE ***
G11 0 VZ VX VY 1e-3
R26 VZ 0 100E6
D21 40 VZ DSLEWP
D22 40 0 DSLEWN
G12 0 VY VZ 0 1.1E-3
C7 VY 0 1E-9
R30 VY 0 10e9
G9 0 41 VY 42 1
R12 41 0 1e10
C5 41 0 11.71E-9
G10 0 42 41 0 1.0E-2
R17 42 0 100.0
C6 42 0 152.3E-12
R27 43 42 0.1
D11 43 45 D
D12 46 43 D
V11 46 47 1.75
V12 44 45 1.15
H1 VPOSx 44 POLY(1) VOSO 0 0 2041
H2 47 VNEGx POLY(1) VOSO 0 0 2041
VOSO VOUT 43 525.3E-6
*
*** NOISE ***
V24 60 0 0
R19 60 0 .0166
D17 61 60 DN
V18 61 0 0.2
V25 64 0 0
R20 64 0 .0166
D19 65 64 DN
V20 65 0 0.231
V21 70 0 0
R28 70 0 .0166
D38 71 70 DIN
V22 71 0 0.2
V23 72 0 0
R29 72 0 .0166
D39 73 72 DIN
V27 73 0 0.2
*
*** SUPPLY CURRENT AND BIASING ***
GSUP +Vs -Vs POLY(1) (+Vs,-Vs) 4.7E-3 20.0E-6
FSUP1 56 0 VOSO -1
D24 90 +Vs DZ
D25 -Vs 52 DZ
D20 90 56 D
D23 56 52 D
FSUP2 57 0 VCS1 1
D26 90 57 D
D27 57 52 D
FSUP3 58 0 VCS2 1
D30 90 58 D
D31 58 52 D
FSUP4 59 0 VCS3 1
D34 90 59 D
D35 59 52 D
E10 VPOSx 0 +Vs 0 1
E11 VNEGx 0 -Vs 0 1
*
*
.MODEL D D(IS=1e-15 N=0.1)
.MODEL DN D(IS=1e-15 KF=3.142E-6)
.MODEL DIN D(IS=1e-15 KF=4.147E-5)
.MODEL DZ D(IS=1e-15 BV=50 RS=1)
.MODEL DSLEWP D(IS=1e-15 BV=19.5 RS=0.1)
.MODEL DSLEWN D(IS=1e-15 BV=19.5 RS=0.1)
*
*
.ENDS AD8429
*$
* AD8505 SPICE Macro-model
* Generic Desc: 1.8/5V, CMOS, OP, ZCO, RRIO, 1X
* Developed by: HH ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (04/2008)
* Copyright 2008, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes: VSY=5V, T=25degC
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8505 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L=2E-6 W=9.070E-04
M2 6 2 8 8 PIX L=2E-6 W=9.070E-04
Cinp 1 50 4.2pF
Cinn 2 50 4.2pF
Cdiff 1 2 3pF
RD1 4 50 5.333E+04
RD2 6 50 5.333E+04
C1 4 6 7.650E-12
I1 99 8 7.500E-06
V1 9 8 +0.025E-00
D1 9 99 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 5.00E-04 1 1 1 1
IOS 1 2 1.50E-12
*
* CMRR=95dB, POLE AT 3500 Hz
*
E1 72 98 POLY(2) (1,98) (2,98) 0 1.289E-02 1.289E-02
R10 72 73 4.613E+01
R20 73 98 3.183E-02
C10 72 73 1.000E-06
*
* PSRR=100dB, POLE AT 100 Hz
*
EPSY 21 98 POLY(1) (99,50) -0.181E-00 0.036E-00
RPS1 21 22 2.274E+04
RPS2 22 98 1.989E-00
CPS1 21 22 1.00E-06
*
* VOLTAGE NOISE REFERENCE OF 37nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 17.500E-3
HN 81 98 VN1 3.651E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 20000 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6531
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) +0.580E-06 0.2710E-06
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
* GAIN STAGE
*
G1 98 30 (4,6) 4.474E-04
R1 30 98 1.00E+06
CF 30 31 1.350E-08
RZ 455 31 1.2280E-03
EZ 455 98 (451 98) 1
V3 32 30 0.279E+00
V4 30 33 0.362E-00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 451 46 99 99 POX L=1E-6 W=3.940E-04
M6 451 47 50 50 NOX L=1E-6 W=4.598E-04
Lout 451 45 10pH
EG1 99 46 POLY(1) (98,30) 3.598E-01 1
EG2 47 50 POLY(1) (30,98) 3.574E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=3.00E-05,VTO=-0.328,LAMBDA=0.015,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=3.00E-05,VTO=+0.328,LAMBDA=0.015,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=5.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=12.400E-11)
.ENDS AD8505
* AD8506 SPICE Macro-model
* Generic Desc: 1.8/5V, CMOS, OP, ZCO, RRIO, 2X
* Developed by: HH ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (04/2008)
* Copyright 2008, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes: VSY=5V, T=25degC
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8506 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L=2E-6 W=9.070E-04
M2 6 2 8 8 PIX L=2E-6 W=9.070E-04
Cinp 1 50 4.2pF
Cinn 2 50 4.2pF
Cdiff 1 2 3pF
RD1 4 50 5.333E+04
RD2 6 50 5.333E+04
C1 4 6 7.650E-12
I1 99 8 7.500E-06
V1 9 8 +0.025E-00
D1 9 99 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 5.00E-04 1 1 1 1
IOS 1 2 1.50E-12
*
* CMRR=95dB, POLE AT 3500 Hz
*
E1 72 98 POLY(2) (1,98) (2,98) 0 1.289E-02 1.289E-02
R10 72 73 4.613E+01
R20 73 98 3.183E-02
C10 72 73 1.000E-06
*
* PSRR=100dB, POLE AT 100 Hz
*
EPSY 21 98 POLY(1) (99,50) -0.181E-00 0.036E-00
RPS1 21 22 2.274E+04
RPS2 22 98 1.989E-00
CPS1 21 22 1.00E-06
*
* VOLTAGE NOISE REFERENCE OF 37nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 17.500E-3
HN 81 98 VN1 3.651E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 20000 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6531
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) +0.580E-06 0.2710E-06
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
* GAIN STAGE
*
G1 98 30 (4,6) 4.474E-04
R1 30 98 1.00E+06
CF 30 31 1.350E-08
RZ 455 31 1.2280E-03
EZ 455 98 (451 98) 1
V3 32 30 0.279E+00
V4 30 33 0.362E-00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 451 46 99 99 POX L=1E-6 W=3.940E-04
M6 451 47 50 50 NOX L=1E-6 W=4.598E-04
Lout 451 45 10pH
EG1 99 46 POLY(1) (98,30) 3.598E-01 1
EG2 47 50 POLY(1) (30,98) 3.574E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=3.00E-05,VTO=-0.328,LAMBDA=0.015,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=3.00E-05,VTO=+0.328,LAMBDA=0.015,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=5.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=12.400E-11)
.ENDS AD8506
*
* AD8508 SPICE Macro-model
* Generic Desc: 1.8/5V, CMOS, OP, ZCO, RRIO, 4X
* Developed by: HH ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (04/2008)
* Copyright 2008, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes: VSY=5V, T=25degC
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8508 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L=2E-6 W=9.070E-04
M2 6 2 8 8 PIX L=2E-6 W=9.070E-04
Cinp 1 50 4.2pF
Cinn 2 50 4.2pF
Cdiff 1 2 3pF
RD1 4 50 5.333E+04
RD2 6 50 5.333E+04
C1 4 6 7.650E-12
I1 99 8 7.500E-06
V1 9 8 +0.025E-00
D1 9 99 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 5.00E-04 1 1 1 1
IOS 1 2 1.50E-12
*
* CMRR=95dB, POLE AT 3500 Hz
*
E1 72 98 POLY(2) (1,98) (2,98) 0 1.289E-02 1.289E-02
R10 72 73 4.613E+01
R20 73 98 3.183E-02
C10 72 73 1.000E-06
*
* PSRR=100dB, POLE AT 100 Hz
*
EPSY 21 98 POLY(1) (99,50) -0.181E-00 0.036E-00
RPS1 21 22 2.274E+04
RPS2 22 98 1.989E-00
CPS1 21 22 1.00E-06
*
* VOLTAGE NOISE REFERENCE OF 37nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 17.500E-3
HN 81 98 VN1 3.651E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 20000 Hz
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6531
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) +0.580E-06 0.2710E-06
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
* GAIN STAGE
*
G1 98 30 (4,6) 4.474E-04
R1 30 98 1.00E+06
CF 30 31 1.350E-08
RZ 455 31 1.2280E-03
EZ 455 98 (451 98) 1
V3 32 30 0.279E+00
V4 30 33 0.362E-00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 451 46 99 99 POX L=1E-6 W=3.940E-04
M6 451 47 50 50 NOX L=1E-6 W=4.598E-04
Lout 451 45 10pH
EG1 99 46 POLY(1) (98,30) 3.598E-01 1
EG2 47 50 POLY(1) (30,98) 3.574E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=3.00E-05,VTO=-0.328,LAMBDA=0.015,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=3.00E-05,VTO=+0.328,LAMBDA=0.015,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=5.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=12.400E-11)
*
*
.ENDS AD8508
* AD8565 SPICE Macro-model Typical Values
* Generic Desc: Single LCD driver amp - 16V rail-rail
* Developed by: RM / ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (06/2007)
* Copyright 2004, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8565 1 2 99 50 45
*
* INPUT STAGE
*
Q1 4 7 18 PIX
Q2 6 2 17 PIX
Q3 11 7 15 NIX
Q4 12 2 16 NIX
RC1 4 50 2000
RC2 6 50 2000
RC3 99 11 2000
RC4 99 12 2000
C1 4 6 3.3E-12
C2 11 12 3.3E-12
RE1 8 18 1.2E3
RE2 8 17 1.2E3
RE3 15 10 1.2E3
RE4 16 10 1.2E3
I1 99 8 100E-6
I2 10 50 100E-6
V1 9 8 1
V2 13 50 1
D1 9 99 DX
D2 13 10 DX
EOS 7 1 POLY(3) (22,98) (73,98) (81,98) 2E-3 1 1 1
IOS 1 2 5E-9
*
* CMRR 95dB, ZERO AT 20kHz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 500E3
CCM1 21 22 15.9E-12
RCM2 22 98 8.9
*
* PSRR=100dB, ZERO AT 100Hz
*
* RPS1 70 0 1E6
* RPS2 71 0 1E6
* CPS1 99 70 1E-5
* CPS2 50 71 1E-5
* EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
EPSY 98 72 POLY(2) (99,0) (0,50) 0 1 1
RPS1 72 73 1.59E6
CPS1 72 73 1E-9
RPS2 73 98 50
*
* VOLTAGE NOISE REFERENCE OF 24nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 24
RN2 81 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 (99,50) 12.5E-6
EVP 97 98 (99,50) 0.5
EVN 51 98 (50,99) 0.5
*
* LHP ZERO AT 7MHz, POLE AT 50MHz
*
E1 32 98 POLY(2) (4,6) (11,12) 0 .5814 .5814
R2 32 33 3.7E3
R3 33 98 22.74E3
C3 32 33 1E-12
*
* GAIN STAGE
*
G1 98 30 POLY(2) (4,6) (11,12) 0 150E-6 150E-6
R1 30 98 542E3
CF 45 30 10E-12
D3 30 97 DX
D4 51 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1u W=1610u
M6 45 47 50 50 NOX L=1u W=1610u
EG1 99 46 POLY(1) (98,30) 0.5209 1
EG2 47 50 POLY(1) (30,98) 0.5209 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=10E-6,VTO=-0.328,LAMBDA=0.01,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=10E-6,VTO=+0.328,LAMBDA=0.01,RD=0)
.MODEL PIX PNP (BF=103,IS=1E-14,VA=100,KF=4.3E-14)
.MODEL NIX NPN (BF=124,IS=1E-14,VA=100,KF=4.3E-14)
.MODEL DX D(IS=1E-14,RS=5)
.ENDS AD8565
* AD8613 SPICE Macro-model
* Generic Desc: 1.8/5V, CMOS, OP, Low Pwr, RRIO, 1X
* Developed by: RM
* Revision History: 08/10/2012 - Updated to new header style
* 0.0 (02/2007)
* 1.0 (08/2012) - Updated to new header style
* 2.0 (03/2017) - Revised CMRR section to 100dB - KF
* Copyright 2007, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8613 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=2.37E-04
M2 16 2 8 8 PIX L=1E-6 W=2.37E-04
M3 17 7 10 10 NIX L=1E-6 W=8.88E-05
M4 18 2 10 10 NIX L=1E-6 W=8.88E-05
RD1 14 50 8.00E+04
RD2 16 50 8.00E+04
RD3 99 17 8.00E+04
RD4 99 18 8.00E+04
C1 14 16 8.08E-13
C2 17 18 8.08E-13
I1 99 8 5.00E-06
I2 10 50 5.00E-06
V1 99 9 2.625E-01
V2 13 50 1.625E-01
D1 8 9 DX
D2 13 10 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 4.00E-04 1 1 1 1
IOS 1 2 5.00E-14
*
*CMRR=95dB, POLE AT 1000 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 8.89E-03 8.89E-03
R10 21 22 1.59E+04
R20 22 98 1.59E-01
C10 21 22 1.00E-09
*
* PSRR=90dB, POLE AT 100 Hz
*
EPSY 72 98 POLY(1) (99,50) -1.58113883 0.316227766
CPS3 72 73 1.00E-06
RPS3 72 73 1.59E+03
RPS4 73 98 1.59E-01
*
* VOLTAGE NOISE REFERENCE OF 22nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 1.98E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 100 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -8.09E-06 3.0E-06
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(2) (14,16) (17,18) 0 4.15E-05 4.15E-05
R1 30 98 1.00E+06
RZ 30 31 7.91E+02
CF 45 31 3.32E-10
V3 32 30 3.53E-01
V4 30 33 -7.53E-01
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.50E-04
M6 45 47 50 50 NOX L=1E-6 W=1.93E-03
EG1 99 46 POLY(1) (98,30) 7.465E-01 1
EG2 47 50 POLY(1) (30,98) 6.335E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=4.00E-05,VTO=-0.7,LAMBDA=0.047,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.6,LAMBDA=0.022,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.50E-05,VTO=-0.5,LAMBDA=0.047)
.MODEL NIX NMOS (LEVEL=2,KP=4.00E-05,VTO=0.5,LAMBDA=0.022)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=4.84E-11)
*
*
.ENDS AD8613
*
* AD8617 SPICE Macro-model
* Generic Desc: 1.8/5V, CMOS, OP, Low Pwr, RRIO, 2X
* Developed by: VW ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 2.0 (02/2010)
* 3.0 (03/2017) - Followed AD8613 model, dual version only
* Copyright 2010, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes: VSY=5V, T=25degC
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8617 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=2.37E-04
M2 16 2 8 8 PIX L=1E-6 W=2.37E-04
M3 17 7 10 10 NIX L=1E-6 W=8.88E-05
M4 18 2 10 10 NIX L=1E-6 W=8.88E-05
RD1 14 50 8.00E+04
RD2 16 50 8.00E+04
RD3 99 17 8.00E+04
RD4 99 18 8.00E+04
C1 14 16 8.08E-13
C2 17 18 8.08E-13
I1 99 8 5.00E-06
I2 10 50 5.00E-06
V1 99 9 2.625E-01
V2 13 50 1.625E-01
D1 8 9 DX
D2 13 10 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 4.00E-04 1 1 1 1
IOS 1 2 5.00E-14
*
*CMRR=95dB, POLE AT 1000 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 8.89E-03 8.89E-03
R10 21 22 1.59E+04
R20 22 98 1.59E-01
C10 21 22 1.00E-09
*
* PSRR=90dB, POLE AT 100 Hz
*
EPSY 72 98 POLY(1) (99,50) -1.58113883 0.316227766
CPS3 72 73 1.00E-06
RPS3 72 73 1.59E+03
RPS4 73 98 1.59E-01
*
* VOLTAGE NOISE REFERENCE OF 22nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 1.98E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 100 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -8.09E-06 3.0E-06
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(2) (14,16) (17,18) 0 4.15E-05 4.15E-05
R1 30 98 1.00E+06
RZ 30 31 7.91E+02
CF 45 31 3.32E-10
V3 32 30 3.53E-01
V4 30 33 -7.53E-01
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.50E-04
M6 45 47 50 50 NOX L=1E-6 W=1.93E-03
EG1 99 46 POLY(1) (98,30) 7.465E-01 1
EG2 47 50 POLY(1) (30,98) 6.335E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=4.00E-05,VTO=-0.7,LAMBDA=0.047,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.6,LAMBDA=0.022,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.50E-05,VTO=-0.5,LAMBDA=0.047)
.MODEL NIX NMOS (LEVEL=2,KP=4.00E-05,VTO=0.5,LAMBDA=0.022)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=4.84E-11)
*
*
.ENDS AD8617
* AD8619 SPICE Macro-model
* Generic Desc: 1.8/5V, CMOS, OP, Low Pwr, RRIO, 4X
* Developed by: VW ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 2.0 (02/2010)
* 3.0 (03/201) - Revised to follow AD8613 model, quad version - KF
* Copyright 2010, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes: VSY=5V, T=25degC
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8619 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=2.37E-04
M2 16 2 8 8 PIX L=1E-6 W=2.37E-04
M3 17 7 10 10 NIX L=1E-6 W=8.88E-05
M4 18 2 10 10 NIX L=1E-6 W=8.88E-05
RD1 14 50 8.00E+04
RD2 16 50 8.00E+04
RD3 99 17 8.00E+04
RD4 99 18 8.00E+04
C1 14 16 8.08E-13
C2 17 18 8.08E-13
I1 99 8 5.00E-06
I2 10 50 5.00E-06
V1 99 9 2.625E-01
V2 13 50 1.625E-01
D1 8 9 DX
D2 13 10 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 4.00E-04 1 1 1 1
IOS 1 2 5.00E-14
*
*CMRR=95dB, POLE AT 1000 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 8.89E-03 8.89E-03
R10 21 22 1.59E+04
R20 22 98 1.59E-01
C10 21 22 1.00E-09
*
* PSRR=90dB, POLE AT 100 Hz
*
EPSY 72 98 POLY(1) (99,50) -1.58113883 0.316227766
CPS3 72 73 1.00E-06
RPS3 72 73 1.59E+03
RPS4 73 98 1.59E-01
*
* VOLTAGE NOISE REFERENCE OF 22nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 1.98E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER = 100 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -8.09E-06 3.0E-06
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(2) (14,16) (17,18) 0 4.15E-05 4.15E-05
R1 30 98 1.00E+06
RZ 30 31 7.91E+02
CF 45 31 3.32E-10
V3 32 30 3.53E-01
V4 30 33 -7.53E-01
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.50E-04
M6 45 47 50 50 NOX L=1E-6 W=1.93E-03
EG1 99 46 POLY(1) (98,30) 7.465E-01 1
EG2 47 50 POLY(1) (30,98) 6.335E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=4.00E-05,VTO=-0.7,LAMBDA=0.047,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.6,LAMBDA=0.022,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.50E-05,VTO=-0.5,LAMBDA=0.047)
.MODEL NIX NMOS (LEVEL=2,KP=4.00E-05,VTO=0.5,LAMBDA=0.022)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=4.84E-11)
*
*
.ENDS AD8619
* AD8657 SPICE Macro-model Typical Values
* Generic Desc: 3/18V, CMOS, OP, Low Pwr, RRIO, 2X
* Developed by: VW ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 1.1 (01/2011)
* Copyright 2010, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include: VSY=18V, T=25°C
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8657 1 2 99 50 45
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L= 1.000E-06 W= 1.532E-04
M2 6 2 8 8 PIX L= 1.000E-06 W=1.532E-04
M3 14 7 18 18 NIX L=1.000E-06 W=4.085E-04
M4 16 2 18 18 NIX L=1.000E-06 W=4.085E-04
RD1 4 50 2.0E+04
RD2 6 50 2.0E+04
RD3 99 14 2.0E+04
RD4 99 16 2.0E+04
C1 4 6 9.4750E-12
C2 14 16 9.4750E-12
I1 99 8 1.722E-05
I2 18 50 1.722E-05
V1 99 9 1.429E-01
V2 19 50 1.429E-01
D1 8 9 DX
D2 19 18 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 3.500E-04 1 1 1 1
IOS 1 2 2.000E-11
CDiff 1 2 3.5E-12
Cin1 1 50 10.5E-12
Cin2 2 50 10.5E-12
*
*
* CMRR
*
E1 72 98 POLY(2) (1,98) (2,98) 0 6.817E-02 6.817E-02
R10 72 73 2.894E+02
R20 73 98 1.592E-02
C10 72 73 1.000E-06
*
* PSRR
*
EPSY 21 98 POLY(1) (99,50) -1.757E+02 9.762E+00
RPS1 21 22 3.183E+03
RPS2 22 98 7.958E-01
CPS1 21 22 1.000E-06
*
* VOLTAGE NOISE
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 4.5165E+01
RN2 81 98 1
*
* FLICKER NOISE
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6551
HFN 83 98 POLY(1) VFN 1.000E-03 1.000E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -1.74975E-05 5.031E-08
EVP 97 98 POLY(1) (99,50) -1.05 0.25
EVN 51 98 POLY(1) (50,99) 1.45 0.3
*
* GAIN STAGE
*
G1 98 30 POLY(2) (4,6) (14,16) 0 5.693E-05 5.693E-05
R1 30 98 1.000E+06
RZ 30 31 8.2720E+03
CF 45 31 5.60E-10
D3 30 97 DX
D4 51 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L= 2.000E-06 W=2.450E-04
M6 45 47 50 50 NOX L= 2.000E-06 W=1.591E-04
EG1 99 46 POLY(1) (98,30) 3.347E-01 1
EG2 47 50 POLY(1) (30,98) 3.216E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=1.000E-05,VTO=-0.3,LAMBDA=0.01,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=4.000E-05,VTO=+0.3,LAMBDA=0.01,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=4.000E-05,VTO=-0.5,LAMBDA=0.01)
.MODEL NIX NMOS (LEVEL=2,KP=1.500E-05,VTO=0.5,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=1.5E-10)
*
*
.ENDS AD8657
*
* AD8662 SPICE Macro-model
* Generic Desc: 5/16V, CMOS, OP, Low Noise, S SPLY, 2X
* Developed by: RM, ADSJ-HH
* Revision History: 08/10/2012 - Updated to new header style
* 1.0
* Copyright 2010, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8662 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=3.02E-03
M2 16 2 8 8 PIX L=1E-6 W=3.02E-03
RC5 14 50 8.00E+02
RC6 16 50 8.00E+02
C1 14 16 1.00E-11
I1 99 8 5.00E-04
V1 99 9 2.071E+00
D1 8 9 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 5.00E-05 1 1 1 1
IOS 1 2 1.00E-13
*
*
* CMRR=110dB, POLE AT 250 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 1.26E-01 1.26E-01
R10 21 22 6.37E+02
R20 22 98 7.96E-03
C10 21 22 1.00E-06
*
* PSRR=115dB, POLE AT 20 Hz
*
EPSY 72 98 POLY(1) (99,50) -2.13E+01 1.33E+00
CPS3 72 73 1.00E-06
RPS3 72 73 7.96E+03
RPS4 73 98 1.06E-02
*
* VOLTAGE NOISE REFERENCE OF 10nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 9.89E+00
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -1.34E-05 1.10E-05
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(1) (14,16) 0 4.83E-04
R1 30 98 1.00E+06
RZ 30 31 2.05E+02
CF 45 31 5.52E-11
V3 32 30 2.89E+00
V4 30 33 -1.86E+00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.23E-04
M6 45 47 50 50 NOX L=1E-6 W=7.38E-04
EG1 99 46 POLY(1) (98,30) 9.639E-01 1
EG2 47 50 POLY(1) (30,98) 6.777E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=1.00E-05,VTO=-0.328,LAMBDA=0.01,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.328,LAMBDA=0.01,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=3.00E-11)
*
*
.ENDS AD8662
*
*
* AD8664 SPICE Macro-model
* Generic Desc: 5/16V, CMOS, OP, Low Noise, S SPLY, 4X
* Developed by: RM
* Revision History: 08/10/2012 - Updated to new header style
* 1.0 (04/2008)
* Copyright 2010, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8664 1 2 99 50 45
*#ASSOC Category="Op-amps" symbol=opamp
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=3.02E-03
M2 16 2 8 8 PIX L=1E-6 W=3.02E-03
RC5 14 50 8.00E+02
RC6 16 50 8.00E+02
C1 14 16 1.00E-11
I1 99 8 5.00E-04
V1 99 9 2.071E+00
D1 8 9 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 5.00E-05 1 1 1 1
IOS 1 2 1.00E-13
*
*
* CMRR=110dB, POLE AT 250 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 1.26E-01 1.26E-01
R10 21 22 6.37E+02
R20 22 98 7.96E-03
C10 21 22 1.00E-06
*
* PSRR=115dB, POLE AT 20 Hz
*
EPSY 72 98 POLY(1) (99,50) -2.13E+01 1.33E+00
CPS3 72 73 1.00E-06
RPS3 72 73 7.96E+03
RPS4 73 98 1.06E-02
*
* VOLTAGE NOISE REFERENCE OF 10nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 9.89E+00
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -1.34E-05 1.10E-05
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(1) (14,16) 0 4.83E-04
R1 30 98 1.00E+06
RZ 30 31 2.05E+02
CF 45 31 5.52E-11
V3 32 30 2.89E+00
V4 30 33 -1.86E+00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.23E-04
M6 45 47 50 50 NOX L=1E-6 W=7.38E-04
EG1 99 46 POLY(1) (98,30) 9.639E-01 1
EG2 47 50 POLY(1) (30,98) 6.777E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=1.00E-05,VTO=-0.328,LAMBDA=0.01,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.328,LAMBDA=0.01,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=3.00E-11)
*
*
.ENDS AD8664
*
*
* AD8665 SPICE Macro-model
* 0.9Beta Rev (10/14/2013)
* Generic Desc: 5/16V, CMOS, OP, Low Noise, S SPLY, 1X
* Developed by: RM
* Revsion history: 02/06/2015 (KF) - fixed output swing
* Revision History: 08/10/2012 - Updated to new header style
* 0.0 (05/2008)
* Copyright 2006, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8665 1 2 99 50 45
*
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=3.02E-03
M2 16 2 8 8 PIX L=1E-6 W=3.02E-03
RC5 14 50 8.00E+02
RC6 16 50 8.00E+02
C1 14 16 1.00E-11
I1 99 8 5.00E-04
V1 99 9 2.071E+00
D1 8 9 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 6.00E-04 1 1 1 1
IOS 1 2 1.00E-13
*
*
* CMRR=110dB, POLE AT 250 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 1.26E-01 1.26E-01
R10 21 22 6.37E+02
R20 22 98 7.96E-03
C10 21 22 1.00E-06
*
* PSRR=115dB, POLE AT 20 Hz
*
EPSY 72 98 POLY(1) (99,50) -2.13E+01 1.33E+00
CPS3 72 73 1.00E-06
RPS3 72 73 7.96E+03
RPS4 73 98 1.06E-02
*
* VOLTAGE NOISE REFERENCE OF 10nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 9.89E+00
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -1.34E-05 1.10E-05
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(1) (14,16) 0 4.83E-04
R1 30 98 1.00E+06
RZ 30 31 2.05E+02
CF 45 31 5.52E-11
*V3 32 30 2.89E+00
V3 32 30 5.59E+00
V4 30 33 -0.16E+00
*V4 30 33 -0.86E+00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.23E-04
*M5 45 46 99 99 POX L=1E-6 W=7.23E-04
M6 45 47 50 50 NOX L=1E-6 W=7.38E-04
EG1 99 46 POLY(1) (98,30) 6.639E-01 1
*EG1 99 46 POLY(1) (98,30) 20.639E-01 1
*EG2 47 50 POLY(1) (30,98) 6.77E-01 1
EG2 47 50 POLY(1) (30,98) 6.77E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=1.00E-05,VTO=-0.328,LAMBDA=0.01,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.328,LAMBDA=0.01,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=3.00E-11)
*
*
.ENDS AD8665
*
*$
* AD8666 SPICE Macro-model
* 0.9Beta Rev (10/14/2013)
* Generic Desc: 5/16V, CMOS, OP, Low Noise, S SPLY, 1X
* Developed by: RM
* Revsion history: 02/06/2015 (KF) - fixed output swing
* Revision History: 08/10/2012 - Updated to new header style
* 0.0 (05/2008)
* Copyright 2006, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8666 1 2 99 50 45
*
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=3.02E-03
M2 16 2 8 8 PIX L=1E-6 W=3.02E-03
RC5 14 50 8.00E+02
RC6 16 50 8.00E+02
C1 14 16 1.00E-11
I1 99 8 5.00E-04
V1 99 9 2.071E+00
D1 8 9 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 6.00E-04 1 1 1 1
IOS 1 2 1.00E-13
*
*
* CMRR=110dB, POLE AT 250 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 1.26E-01 1.26E-01
R10 21 22 6.37E+02
R20 22 98 7.96E-03
C10 21 22 1.00E-06
*
* PSRR=115dB, POLE AT 20 Hz
*
EPSY 72 98 POLY(1) (99,50) -2.13E+01 1.33E+00
CPS3 72 73 1.00E-06
RPS3 72 73 7.96E+03
RPS4 73 98 1.06E-02
*
* VOLTAGE NOISE REFERENCE OF 10nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 9.89E+00
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -1.34E-05 1.10E-05
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(1) (14,16) 0 4.83E-04
R1 30 98 1.00E+06
RZ 30 31 2.05E+02
CF 45 31 5.52E-11
*V3 32 30 2.89E+00
V3 32 30 5.59E+00
V4 30 33 -0.16E+00
*V4 30 33 -0.86E+00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.23E-04
*M5 45 46 99 99 POX L=1E-6 W=7.23E-04
M6 45 47 50 50 NOX L=1E-6 W=7.38E-04
EG1 99 46 POLY(1) (98,30) 6.639E-01 1
*EG1 99 46 POLY(1) (98,30) 20.639E-01 1
*EG2 47 50 POLY(1) (30,98) 6.77E-01 1
EG2 47 50 POLY(1) (30,98) 6.77E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=1.00E-05,VTO=-0.328,LAMBDA=0.01,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.328,LAMBDA=0.01,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=3.00E-11)
*
*
.ENDS AD8666
*
*$
* AD8668 SPICE Macro-model
* 0.9Beta Rev (10/14/2013)
* Generic Desc: 5/16V, CMOS, OP, Low Noise, S SPLY, 1X
* Developed by: RM
* Revsion history: 02/06/2015 (KF) - fixed output swing
* Revision History: 08/10/2012 - Updated to new header style
* 0.0 (05/2008)
* Copyright 2006, 2012 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
*
* Not Modeled:
*
* Parameters modeled include:
*
* END Notes
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT AD8668 1 2 99 50 45
*
*
* INPUT STAGE
*
M1 14 7 8 8 PIX L=1E-6 W=3.02E-03
M2 16 2 8 8 PIX L=1E-6 W=3.02E-03
RC5 14 50 8.00E+02
RC6 16 50 8.00E+02
C1 14 16 1.00E-11
I1 99 8 5.00E-04
V1 99 9 2.071E+00
D1 8 9 DX
EOS 7 1 POLY(4) (22,98) (73,98) (81,98) (70,98) 6.00E-04 1 1 1 1
IOS 1 2 1.00E-13
*
*
* CMRR=110dB, POLE AT 250 Hz
*
E1 21 98 POLY(2) (1,98) (2,98) 0 1.26E-01 1.26E-01
R10 21 22 6.37E+02
R20 22 98 7.96E-03
C10 21 22 1.00E-06
*
* PSRR=115dB, POLE AT 20 Hz
*
EPSY 72 98 POLY(1) (99,50) -2.13E+01 1.33E+00
CPS3 72 73 1.00E-06
RPS3 72 73 7.96E+03
RPS4 73 98 1.06E-02
*
* VOLTAGE NOISE REFERENCE OF 10nV/rt(Hz)
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 9.89E+00
RN2 81 98 1
*
* FLICKER NOISE CORNER = 300 Hz
*
D5 69 98 DNOISE
VSN 69 98 DC 0.6551
H1 70 98 POLY(1) VSN 1.00E-03 1.00E+00
RN 70 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) -1.34E-05 1.10E-05
EVP 97 98 POLY(1) (99,50) 0 0.5
EVN 51 98 POLY(1) (50,99) 0 0.5
*
* GAIN STAGE
*
G1 98 30 POLY(1) (14,16) 0 4.83E-04
R1 30 98 1.00E+06
RZ 30 31 2.05E+02
CF 45 31 5.52E-11
*V3 32 30 2.89E+00
V3 32 30 5.59E+00
V4 30 33 -0.16E+00
*V4 30 33 -0.86E+00
D3 32 97 DX
D4 51 33 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=1E-6 W=2.23E-04
*M5 45 46 99 99 POX L=1E-6 W=7.23E-04
M6 45 47 50 50 NOX L=1E-6 W=7.38E-04
EG1 99 46 POLY(1) (98,30) 6.639E-01 1
*EG1 99 46 POLY(1) (98,30) 20.639E-01 1
*EG2 47 50 POLY(1) (30,98) 6.77E-01 1
EG2 47 50 POLY(1) (30,98) 6.77E-01 1
*
* MODELS
.MODEL POX PMOS (LEVEL=2,KP=1.00E-05,VTO=-0.328,LAMBDA=0.01,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.328,LAMBDA=0.01,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.00E-05,VTO=-5.00E-01,LAMBDA=0.01)
.MODEL DX D(IS=1E-14,RS=5)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=3.00E-11)
.ENDS AD8668
*
.subckt ADA4177-1 1 2 3 4 5
C1 N006 N005 {Cf}
A1 N009 0 N010 N010 N010 N010 N005 N010 OTA g={Ga} Iout={Islew} en=8n enk=12 Vhigh=1e308 Vlow=-1e308
D5 N006 3 X
D6 4 N006 X
G2 0 N010 3 0 500µ
R4 N010 0 1K noiseless
G3 0 N010 4 0 500µ
S1 N005 N010 4 3 SD
C4 N004 0 {5p*x} Rpar=1K noiseless
C18 2 1 1p Rpar=4Meg noiseless
D8 3 1 1nA m=.4
C3 3 5 1p
C7 5 4 .25p
A2 2 1 0 0 0 0 0 0 OTA g=0 in=.2p ink=1.5K incm=.02p incmk=1.5k
Ö1 N006 3 4 N005 N010 Gm1={Gb} Ibias=500u
D1 3 2 1nA m=.4
R5 5 N006 25
L2 N004 N007 {5µ*x}
C10 N007 0 {5p*x} Rpar=1K noiseless
D2 2 3 OVP1
D4 2 3 OVP2
D7 4 1 OVP1
D9 4 1 OVP2
C2 3 2 2p
C5 3 1 2p
C6 2 4 2p
C11 1 4 2p
D10 2 1 DIN
B3 N004 0 I=2m*dnlim(uplim(V(2),V(3)-1.4,.1), V(4)+1.4, .1)+100n*V(2)
B4 0 N004 I=2m*dnlim(uplim(V(1),V(3)-1.4,.1), V(4)+1.4, .1)+100n*V(1)
D11 N010 N005 IO
L1 N008 0 10µ Rser=1K noiseless
G1 0 N008 N007 0 1m
L3 N009 0 10µ Rser=1K noiseless
G4 0 N009 N008 0 1m
.param Cf = 1p
.param Ro = 11.8K
.param Avol = 320K
.param RL = 2K
.param AVmid = 3.5
.param FmidA = 1Meg
.param Zomid = .08
.param FmidZ = 1k
.param Vslew = 1.5Meg
.param Vmin = 3.5
.param Roe = 1/(1/RL+1/Ro)
.param Gb = ((FmidZ/FmidA)*(Roe/(AVmid*Zomid))-1)/Roe
.param Ga = 2*pi*FmidZ*Cf/(Zomid*gb)
.param RH = Avol/(Ga*Gb*Roe)
.param Islew = Vslew*Cf*(1+1/(Roe*Gb))
.model X D(Ron=1m Roff=1G Vfwd=-25m epsilon=10m noiseless)
.model SD SW(Ron=10m Roff={RH} Vt={-Vmin-100m} Vh=-.1 noiseless)
.model 1nA D(Ron=500Meg epsilon=.5 Ilimit=1n noiseless)
.model IO D(Ron=2K Roff=1T Vfwd={51m/Gb} Vrev={64m/Gb} revepsilon=.1 epsilon=.1 noiseless)
.model OVP1 D(Ron=400 Roff=400G epsilon=1 Ilimit=8m noiseless)
.model OVP2 D(Ron=12K Roff=400G Vfwd=6 epsilon=1 noiseless)
.model DIN D(Ron=300 epsilon=.5 Vfwd=1 Ilimit=10m revIlimit=10m Vrev=1 revepsilon=.5 noiseless)
.param X=2.5
.ends ADA4177-1
*
*
.subckt ADA4177 1 2 3 4 5
C1 N006 N005 {Cf}
A1 N009 0 N010 N010 N010 N010 N005 N010 OTA g={Ga} Iout={Islew} en=8n enk=12 Vhigh=1e308 Vlow=-1e308
D5 N006 3 X
D6 4 N006 X
G2 0 N010 3 0 500µ
R4 N010 0 1K noiseless
G3 0 N010 4 0 500µ
S1 N005 N010 4 3 SD
C4 N004 0 {5p*x} Rpar=1K noiseless
C18 2 1 1p Rpar=4Meg noiseless
D8 3 1 1nA m=.4
C3 3 5 1p
C7 5 4 .25p
A2 2 1 0 0 0 0 0 0 OTA g=0 in=.2p ink=1.5K incm=.02p incmk=1.5k
Ö1 N006 3 4 N005 N010 Gm1={Gb} Ibias=500u
D1 3 2 1nA m=.4
R5 5 N006 25
L2 N004 N007 {5µ*x}
C10 N007 0 {5p*x} Rpar=1K noiseless
D2 2 3 OVP1
D4 2 3 OVP2
D7 4 1 OVP1
D9 4 1 OVP2
C2 3 2 2p
C5 3 1 2p
C6 2 4 2p
C11 1 4 2p
D10 2 1 DIN
B3 N004 0 I=2m*dnlim(uplim(V(2),V(3)-1.4,.1), V(4)+1.4, .1)+100n*V(2)
B4 0 N004 I=2m*dnlim(uplim(V(1),V(3)-1.4,.1), V(4)+1.4, .1)+100n*V(1)
D11 N010 N005 IO
L1 N008 0 10µ Rser=1K noiseless
G1 0 N008 N007 0 1m
L3 N009 0 10µ Rser=1K noiseless
G4 0 N009 N008 0 1m
.param Cf = 1p
.param Ro = 11.8K
.param Avol = 320K
.param RL = 2K
.param AVmid = 3.5
.param FmidA = 1Meg
.param Zomid = .08
.param FmidZ = 1k
.param Vslew = 1.5Meg
.param Vmin = 3.5
.param Roe = 1/(1/RL+1/Ro)
.param Gb = ((FmidZ/FmidA)*(Roe/(AVmid*Zomid))-1)/Roe
.param Ga = 2*pi*FmidZ*Cf/(Zomid*gb)
.param RH = Avol/(Ga*Gb*Roe)
.param Islew = Vslew*Cf*(1+1/(Roe*Gb))
.model X D(Ron=1m Roff=1G Vfwd=-25m epsilon=10m noiseless)
.model SD SW(Ron=10m Roff={RH} Vt={-Vmin-100m} Vh=-.1 noiseless)
.model 1nA D(Ron=500Meg epsilon=.5 Ilimit=1n noiseless)
.model IO D(Ron=2K Roff=1T Vfwd={51m/Gb} Vrev={64m/Gb} revepsilon=.1 epsilon=.1 noiseless)
.model OVP1 D(Ron=400 Roff=400G epsilon=1 Ilimit=8m noiseless)
.model OVP2 D(Ron=12K Roff=400G Vfwd=6 epsilon=1 noiseless)
.model DIN D(Ron=300 epsilon=.5 Vfwd=1 Ilimit=10m revIlimit=10m Vrev=1 revepsilon=.5 noiseless)
.param X=2.5
.ends ADA4177
*
*
*
* ADA4637 SPICE Macro-model
* Description: Amplifier
* Generic Desc: 8/30V, JFET, OP, Low Noise, Low Ib, 1X
* Developed by: HH / ADSJ
* Revision History: 08/10/2012 - Updated to new header style
* 04/15/2021 - Corrected output voltage limit versus supply voltage.
* 1.0 (08/2010)
* Copyright 2010, 2012, 2021 by Analog Devices
*
* Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spiceModels/license/spice_general.html for License Statement. Use of this model
* indicates your acceptance of the terms and provisions in the License Statement.
*
* BEGIN Notes:
* CAUTION!! To aid in convergence, most Spice simulators add a
* conductance on every node to insure that no node is floating.
* This is GMIN, and the default value is usually 1E-12. To properly
* simulate the low input bias current and low current noise, the
* Spice simulator options have to be set to the following:
* .OPTIONS GMIN=0.01p
* .OPTIONS ABSTOL=0.01pA
* .OPTIONS ITL1=500
* .OPTIONS ITL2=200
* .OPTIONS ITL4=100
*
* Not Modeled:
*
* Parameters modeled include:
* This model simulates typical values at Vs=±15V
* The ADA4637 is decompensated. Operate at a noise gain >5
*
* END Notes
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT ADA4637 1 2 99 50 30
*
* INPUT STAGE
*
Cdiff 1 2 3E-12
Cin1 1 50 5E-12
Cin2 2 50 5E-12
*
R3 5 99a 2.579E+02
R4 6 99a 2.579E+02
Ddp 99b 99a DX
VCP 99 99b -0.3V
J1 5 2 4 JX
J2 6 7 4 JX
*
I1 4 50 3.877E-03
IOS 1 2 67.25E-12
EOS 7 1 POLY(3) (17,24) (73,98) (42,0) 110E-6 1 1 1 1
*
EREF 98 0 24 0 1
*
* SECOND STAGE
*
R5 9 98 3.974E+05
C3 9 98 1.000E-9
G1 98 9 5 6 1.700E-01
V2 99 8 2.7; source
V3 10 50 2.3; sink
D1 9 8 DX2
D2 10 9 DX2
*
* 2nd
*
G5 98 18 9 98 1E-03
R13 18 19 1.0E+03
R13a 19 98 4.0E-3
C13a 18 98 2E-13
*
* COMMON-MODE GAIN NETWORK
*
R11 16 17 1.447E+01
R12 17 98 1.768E-03
E3 16 98 POLY(2) 1 98 2 98 0 7.192E-02 7.192E-02
C8 16 17 1.0E-6
*
* PSRR NETWORK
*
EPSY 98 72 POLY(1) (99,50) 2.897E-04 8.692E-03
CPS3 72 73 1.000E-09
RPS3 72 73 8.603E+04
RPS4 73 98 1.326E+02
*
* VOLTAGE NOISE GENERATOR
*
VN1 41 0 DC 2
DN1 41 42 DEN
DN2 42 43 DEN
VN2 0 43 DC 2
*
*
GSY 99 50 POLY(1) (99,50) 3.615E-03 11.7E-06
*
* OUTPUT STAGE
*
R14 24 99 500E3
R15 24 50 500E3
R16 29 99 100
R17 29 50 100
G8 29 99 POLY(1) 99 18 1E-16 1.00E-2
G9 50 29 POLY(1) 18 50 1E-16 1.00E-2
*
V4 25 29 2.02; Isc high side
V5 29 26 1.83
D3 18 25 DX
D4 26 18 DX
*
G6 27 50 18 29 10.0E-03
G7 28 50 29 18 10.0E-03
D5 99 27 DX
D6 99 28 DX
D7 50 27 DY
D8 50 28 DY
F1 29 0 V4 1
F2 0 29 V5 1
*
L1 29 30a 1E-15
R24 30a 30 1m; 30 is output pin
*
* MODELS USED
*
.MODEL JX NJF(BETA=1.699E-02 VTO=-1.500 IS=7E-13 RD=1m
+ RS=1m CGD=1.5E-14 CGS=1.5E-14 LAMBDA=0.01 )
*.MODEL JX PJF(BETA=1.4E-3 VTO=-1.000 IS=20E-12 RD=0
*+ RS=0 CGD=3E-12 CGS=3E-12)
.MODEL DX D(IS=1E-15 RS=0 CJO=1E-12)
.MODEL DY D(IS=1E-15 BV=50 RS=10 CJO=1E-12)
.MODEL DEN D(IS=1E-12 RS=2.4E3, KF=3.7E-15 AF=1)
.MODEL DIN D(IS=1E-12 RS=12090 KF=0 AF=1)
.MODEL DX2 D(Ron=1m Roff=1G Vfwd=0 Epsilon=0.3)
*
.ENDS ADA4637
*
* ADA4661-2 SPICE Macro-model
* Typical Values
* 07/13, Version 0
* VW ADSJ
*
* Copyright 2013 by Analog Devices
*
* VSY=18V, T=25°C
*
* Refer to "README.DOC" file for License Statement. Use of this
* model indicates your acceptance of the terms and provisions in
* the License Statement.
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT ADA4661-2 1 2 99 50 45
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L=1E-6 W=2.65E-04
M2 6 2 8 8 PIX L=1E-6 W=2.65E-04
M3 14 7 18 18 NIX L=1E-6 W=1.18E-04
M4 16 2 18 18 NIX L=1E-6 W=1.18E-04
RD1 4 50 1.33E+04
RD2 6 50 1.33E+04
RD3 99 14 1.33E+04
RD4 99 16 1.33E+04
C1 4 6 8.15E-13
C2 14 16 8.15E-13
I1 99 8 3.00E-05
I2 18 50 3.00E-05
V1 99 9 2.113E+00
V2 19 50 1.203E-01
D1 8 9 DX
D2 19 18 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 1.50E-04 1 1 1 1
IOS 1 2 1.50E-12
Ccm1 1 50 3E-12
Ccm2 2 50 3E-12
Cdm 1 2 8.5E-12
*
*CMRR
*
E1 72 98 POLY(2) (1,98) (2,98) 0 5.25E-03 5.25E-03
R10 72 73 1.89E+02
R20 73 98 7.959E-02
C10 72 73 1.00E-06
*
* PSRR
*
EPSY 21 98 POLY(1) (99,50) -2.074E+02 1.152E+1
RPS1 21 22 1.59E+05
RPS2 22 98 3.18E-02
CPS1 21 22 1.00E-06
*
* VOLTAGE NOISE
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 1.07E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6441
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) 4.575E-04 -1.55E-6
EVP 97 98 POLY(1)(99,50) 0.5 0.175
EVN 51 98 POLY(1)(50,99) 0.5 0.375
*
* GAIN STAGE
*
G1 98 30 POLY(2) (4,6) (14,16) 0 7.103E-03 7.103E-03
R1 30 98 1.00E+06
RZ 455 31 0.195E+00
CF 30 31 2.95E-9
EZ 455 98 (45,98) 1
D3 30 97 DX
D4 51 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=3E-6 W=5.99E-04
M6 45 47 50 50 NOX L=3E-6 W=5.99E-03
EG1 99 46 POLY(1) (98,30) 8.523E-01 1
EG2 47 50 POLY(1) (30,98) 6.964E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=4.00E-05,VTO=-0.7,LAMBDA=0.047,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.6,LAMBDA=0.022,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.50E-05,VTO=-0.5,LAMBDA=0.047)
.MODEL NIX NMOS (LEVEL=2,KP=4.00E-05,VTO=0.5,LAMBDA=0.022)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=1.53E-10)
*
*
.ENDS ADA4661-2
*
*$
* ADA4666-2 SPICE Macro-model
* Typical Values
* 07/13, Version 0
* VW ADSJ
*
* Copyright 2013 by Analog Devices
*
* VSY=18V, T=25°C
*
* Refer to "README.DOC" file for License Statement. Use of this
* model indicates your acceptance of the terms and provisions in
* the License Statement.
*
* Node Assignments
* noninverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
* | | | | |
.SUBCKT ADA4666-2 1 2 99 50 45
*
* INPUT STAGE
*
M1 4 7 8 8 PIX L=1E-6 W=2.65E-04
M2 6 2 8 8 PIX L=1E-6 W=2.65E-04
M3 14 7 18 18 NIX L=1E-6 W=1.18E-04
M4 16 2 18 18 NIX L=1E-6 W=1.18E-04
RD1 4 50 1.33E+04
RD2 6 50 1.33E+04
RD3 99 14 1.33E+04
RD4 99 16 1.33E+04
C1 4 6 8.15E-13
C2 14 16 8.15E-13
I1 99 8 3.00E-05
I2 18 50 3.00E-05
V1 99 9 2.113E+00
V2 19 50 1.203E-01
D1 8 9 DX
D2 19 18 DX
EOS 7 1 POLY(4) (73,98) (22,98) (81,98) (83,98) 2.2E-03 1 1 1 1
IOS 1 2 1.50E-12
Ccm1 1 50 3E-12
Ccm2 2 50 3E-12
Cdm 1 2 8.5E-12
*
*CMRR
*
E1 72 98 POLY(2) (1,98) (2,98) 0 5.25E-03 5.25E-03
R10 72 73 1.89E+02
R20 73 98 7.959E-02
C10 72 73 1.00E-06
*
* PSRR
*
EPSY 21 98 POLY(1) (99,50) -2.074E+02 1.152E+1
RPS1 21 22 1.59E+05
RPS2 22 98 3.18E-02
CPS1 21 22 1.00E-06
*
* VOLTAGE NOISE
*
VN1 80 98 0
RN1 80 98 16.45E-3
HN 81 98 VN1 1.07E+01
RN2 81 98 1
*
* FLICKER NOISE CORNER
*
DFN 82 98 DNOISE
VFN 82 98 DC 0.6441
HFN 83 98 POLY(1) VFN 1.00E-03 1.00E+00
RFN 83 98 1
*
* INTERNAL VOLTAGE REFERENCE
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5
GSY 99 50 POLY(1) (99,50) 4.575E-04 -1.55E-6
EVP 97 98 POLY(1)(99,50) 0.5 0.175
EVN 51 98 POLY(1)(50,99) 0.5 0.375
*
* GAIN STAGE
*
G1 98 30 POLY(2) (4,6) (14,16) 0 7.103E-03 7.103E-03
R1 30 98 1.00E+06
RZ 455 31 0.195E+00
CF 30 31 2.95E-9
EZ 455 98 (45,98) 1
D3 30 97 DX
D4 51 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=3E-6 W=5.99E-04
M6 45 47 50 50 NOX L=3E-6 W=5.99E-03
EG1 99 46 POLY(1) (98,30) 8.523E-01 1
EG2 47 50 POLY(1) (30,98) 6.964E-01 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=4.00E-05,VTO=-0.7,LAMBDA=0.047,RD=0)
.MODEL NOX NMOS (LEVEL=2,KP=1.00E-05,VTO=+0.6,LAMBDA=0.022,RD=0)
.MODEL PIX PMOS (LEVEL=2,KP=1.50E-05,VTO=-0.5,LAMBDA=0.047)
.MODEL NIX NMOS (LEVEL=2,KP=4.00E-05,VTO=0.5,LAMBDA=0.022)
.MODEL DX D(IS=1E-14,RS=0.1)
.MODEL DNOISE D(IS=1E-14,RS=0,KF=1.53E-10)
*
*
.ENDS ADA4666-2
*
* Generic Desc: 10V/100V, BIPOLAR
* Developed by: DB / ADSJ
* Revision History:
*02/18/2014 - initial release
*02/26/2014 rev 0.1 - Edited subckt line
* 0.1 (02/2014)
*
* Copyright 2014 by Analog Devices
*
* T=25°C
*
* Refer to "README.DOC" file for License Statement. Use of this
* model indicates your acceptance of the terms and provisions in
* the License Statement.
*****************************************************
* in+ in- vps+ vps- out
.SUBCKT ADA4700-1 1 2 99 50 5
*
*****************************************************
*
*****************************************************
* input gm (voltage -> current) stage
q1 99 3 6 50 npn1 10
q2 99 4 7 50 npn1 10
q3 50 3 6 50 pnp1 1
q4 50 4 7 50 pnp1 1
c3 1 50 5.0pf
c4 2 50 5.0pf
c5 3 4 0.5pf
r5 1 3 2k
r6 2 4 2k
d01 6 8 d1
d02 7 9 d1
d03 9 8 d1
d04 8 9 d1
g01 8 50 56 55 160e-6
g02 9 50 56 55 160e-6
e01 10 55 87 9 1.00
e02 91 55 11 55 1.00
e03 92 55 12 55 1.00
e04 93 91 56 55 12e-3
e05 92 94 56 55 12e-3
d05 10 11 d1
d06 12 10 d1
d07 95 93 d1
d08 94 96 d1
r7 55 95 200
r8 96 55 200
g04 55 14 55 95 3.00e-3
g05 15 55 96 55 3.00e-3
g06 11 14 56 55 100e-6
g07 15 12 56 55 100e-6
*
* input (NPN) base current caneclation
q5 99 45 44 50 npn1 10
g14 44 50 56 55 160e-6
e15 99 46 56 55 0.6
g20 99 45 46 45 10e-6
g21 99 3 46 45 10e-6
g22 99 4 46 45 10e-6
*
********************************************************
* current mirror, voltage gain, and compensation at negative supply
g08 14 50 14 50 0.5e-3
g09 18 50 14 50 0.5e-3
c13 16 20 3.0pf
c15 20 18 15pf
c17 14 50 4.0pf
c19 20 50 3.0pf
r13 14 16 2.0k
c22 18 50 6.0pf
c23 21 50 20pf
r10 14 50 1e9
r21 18 50 400e6
*
********************************************************
* current mirror, voltage gain, and compensation at postive supply
g10 99 15 99 15 0.5e-3
g11 99 19 99 15 0.5e-3
c14 17 20 3.0pf
c16 20 19 15pf
c18 99 15 4.0pf
c20 99 20 3.0pf
r14 15 17 2.0k
c24 19 99 6.0pf
c25 22 99 20pf
r11 99 15 1e9
r23 19 99 400e6
*
********************************************************
* unit gain voltage buffer and output drive and bias
q12 34 34 29 50 pnp1 600
q13 35 35 29 50 npn1 300
e06 28 50 27 50 1.0
d9 23 21 d1
d10 24 23 d1
d11 20 24 d1
d12 25 20 d1
d13 26 25 d1
d14 22 26 d1
d15 32 27 d1
d16 27 33 d1
d21 34 29 d1
d22 29 35 d1
r15 21 18 1.2k
r16 19 22 1.2k
r19 20 21 7.0k
r20 22 20 7.0k
r27 29 28 2.0k
* noiseless 40k resistors
g18 20 27 20 27 25e-6
*
g12 34 50 56 55 100e-6
g13 99 35 56 55 100e-6
e13 32 50 54 55 2.6
e14 99 33 54 55 2.7
*
* output transistors w/short current limit and output feedback compensation
q17 99 37 39 50 npn1 300
q18 50 36 38 50 pnp1 600
q19 43 39 38 50 npn1 1
q20 42 38 39 50 pnp1 1
d19 22 43 d1
d20 42 21 d1
r3 39 5 20
r4 5 38 20
r17 35 37 2.0k
r18 34 36 1.0k
* current boost for output transistors
g16 36 50 36 34 15e-3
g17 99 37 35 37 3.0e-3
*
r25 42 21 100k
r26 22 43 100k
*
c1 5 41 20.0pf
r1 22 41 5.0k
c2 5 40 20.0pf
r2 21 40 5.0k
*
********************************************************
* macromodel turn on control and bias
*
* Generate 1.0 volt reference
qb1 60 60 99 50 pnp1 1
qb2 62 61 50 50 npn1 1
qb3 64 62 63 50 npn1 10
d64 65 64 d1
d65 99 65 d1
d66 66 64 d1
d67 67 55 d1
d68 68 55 d1
rb1 60 61 2e6
rb2 61 62 1.0k
rb3 61 50 500k
rb4 63 50 300
rb5 65 64 20k
rb6 99 65 20k
rb7 99 66 20k
rb8 67 55 10e6
rb9 68 55 160e6
g67 99 67 99 66 160e-6
g68 99 68 99 66 10e-6
e67 69 55 67 55 0.77
e68 70 69 67 68 7.90
*
* Buffer and filter 1.0 volt reference
r51 70 51 10k
c51 51 55 40pf
e51 53 55 51 55 1.00
r52 53 52 10k
c52 52 55 40pf
e52 56 55 52 55 1.00
*
* Generate voltage half way between the power suppplies
eb1 55 50 99 50 0.50
*
* Generate one diode voltage
g54 55 54 56 55 100e-6
d40 54 55 d1
rb10 54 55 20k
*
********************************************************
* input error adjusts and input noise
*
* Vos
e84 84 8 56 55 1e-15
*
* Input Voltage Noise flat band and 1/f
e87 87 84 78 79 1.6
d76 76 55 dnoise
d77 77 55 dnoise
g76 55 76 56 55 160e-6
g77 55 77 56 55 160e-6
c77 79 78 5.0pf
r77 79 78 2.0k
r78 76 78 300k
r79 77 79 300k
*
* Input Current Noise flat band and 1/f
d80 80 55 dnoise
d81 81 55 dnoise
d82 82 55 dnoise
g80 55 80 56 55 160e-6
g81 55 81 56 55 160e-6
g82 55 82 56 55 160e-6
g31 2 50 81 80 0.20e-6
g32 1 50 82 80 0.20e-6
*
********************************************************
* adjust supply current
*
* set supply current at low voltage supply voltage
g15 99 50 56 55 600e-6
*
* set supply current change with supply voltage change
r30 99 50 1.0e6
*
********************************************************
* esd diodes
d51 50 1 d2
d52 1 99 d2
d53 50 2 d2
d54 2 99 d2
d55 50 5 d2
d56 5 99 d2
d57 50 99 dz120
*
********************************************************
* models
*
.MODEL npn1 NPN is=1e-16, bf=200, vaf=150, ikf=100e-6
*.MODEL npn1 NPN is=1e-16, bf=400, vaf=150, ikf=100e-6
.MODEL pnp1 PNP is=1e-16, bf=100, vaf=100, ikf=50e-6
*
*.model d1 d is=1e-14, rs=1.0
.model d1 d is=1e-14, rs=10
.model d2 d is=1e-14, rs=1.0
.model dnoise d is=1e-14, rs=1.0, kf=5.0e-11
.model dz120 d is=1e-13, rs=1.0, bv=120, ibv=5e-4
*
********************************************************
* generator format
* g_gen out_sink out_source input_pos input_neg gain(amp/volt)
* e_gen out_pos out_neg input_pos input_neg gain(volt/volt)
********************************************************
*
.ENDS ADA4700-1
*
*****************************************************
*ADA4830 Macro-model
*Function:Video Amplifier
*
*Revision History:
*Rev.1.0 Nov 2017-CJG
*Copyright 2017 by Analog Devices
*
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
*for License Statement. Use of this model indicates your acceptance
*of the terms and provisions in the License Staement.
*
*Tested on MultiSim, SiMetrix, LTSpice
*
*Not modeled:
* PSRR, CMR, Output Offset Voltage, Distortion
*
*
*
*Parameters modeled include:
* Input CM limits and Typ output voltge swing over full supply range,
* Gain, Output current limits, Voltage Noise, Input Clamps, Output Clamps,
* Power Down,Quiescent supply current, Short-to-battery flag.
*
*
*
* Node assignments
* voltage reference
* | non-inverting input
* | | inverting input
* | | | positive supply
* | | | | negative supply
* | | | | | enable
* | | | | | | short-to-battery
* | | | | | | | output
* | | | | | | | |
.SUBCKT ADA4830 VREF INP INN VSY GND ENA STB OUT
**Power Supplies**
R11 VSY 17 Rideal 1e-006
D4 GND 17 DIODE
I1 17 34 dc 0.01
S6 34 GND ENA ENAN SWITCHe
E11 VSY1 GND 17 GND 1
V9 VCL GND dc 10
V11 VEE GND dc -10
******************************************************************************************
**Input Stage**
Rdiff INN INP Rideal 6700
Rcm1 INP GND Rideal 2000
Rcm2 INN GND Rideal 2000
S1 INP 29 ENA ENAN SWITCHe
S2 INN 30 ENA ENAN SWITCHe
E1 INPCL GND 29 GND 1
E2 INNCL GND 30 GND 1
******************************************************************************************
**Input Clamp**
R15 INPCL OPCL Rideal 10
D6 OPCL 36 DIODE
D7 37 OPCL DIODE
V5 37 VEE dc 0.8
V6 VCL 36 dc 1.28
R16 INNCL ONCL Rideal 10
D8 ONCL 19 DIODE
D9 23 ONCL DIODE
V18 23 VEE dc 0.8
V19 VCL 19 dc 1.28
E3 INPx GND OPCL GND 1
E4 INNx GND ONCL GND 1
******************************************************************************************
**Filter Stage**
R2 2 INPx Rideal 1
R4 6 INNx Rideal 1
C1 2 GND 9.8e-010
C4 6 GND 9.8e-010
L1 2 3 2.679e-009
L4 6 12 2.679e-009
C2 3 GND 3.66e-009
C5 12 GND 3.66e-009
L2 3 4 3.66e-009
L5 12 16 3.66e-009
C3 4 GND 2.679e-009
C6 16 GND 2.679e-009
L3 4 5 4e-010
L6 16 18 4e-010
R3 GND 5 Rideal 1
R5 GND 18 Rideal 1
E5 FPO GND 5 GND 2
E6 FNO GND 18 GND 2
******************************************************************************************
**Voltage Reference**
Rref1 VREF VSY1 Rideal 40000
Rref2 VREF GND Rideal 40000
E7 14 GND VREF GND 1
R1 33 43 Rideal 5000
S3 33 VREFx ENA ENAN SWITCHe
******************************************************************************************
**Vref Clamp**
R19 14 43 Rideal 10
D10 43 31 DIODE
D11 32 43 DIODE
V20 VSY 31 dc 1.9
V32 32 GND dc 0.93
******************************************************************************************
**Gain Stage**
R6 VREFx FPO Rideal 10000
R7 1 FNO Rideal 10000
G1 GND Vox VREFx 1 1
R8 GND Vox Rideal 1000000
R9 Vox 1 Rideal 5000
C7 GND Vox 3e-010
******************************************************************************************
**Enable**
R14 ENA 26 Rideal 1600000000
E12 24 27 26 GND 1
V13 GND 27 dc 1
R18 24 25 Rideal 1000000
D5 GND 25 DIODE
E13 26 28 25 GND 1
E14 28 ENAN 21 GND 1
V4 20 GND dc 2
R17 22 20 Rideal 0.1
S5 22 21 ENA ENAN SWITCHe
R13 GND 21 Rideal 100
C8 21 GND 1e-012
******************************************************************************************
**Spectral Noise**
h1 10 Vox Vmeas1 1
Vmeas1 8 GND dc 0
R10 8 GND Rideal 0.0167
D1 9 8 DNOISE
V30 9 GND dc 0.1
E8 7 GND 10 GND 1
******************************************************************************************
**Output Clamp**
R12 11 7 Rideal 100
D2 11 13 DIODE
D3 41 11 DIODE
V21 41 GND dc 0.75
V3 VSY 13 dc 0.987
E9 15 GND 11 GND 1
******************************************************************************************
**Output Current**
E10 42 GND 15 GND 1
h2 42 38 Vmeas2 20
Vmeas2 42 35 dc 0
D12 15 40 DIODE
D13 39 15 DIODE
V22 38 39 dc 1.805
V23 40 38 dc 1.805
S4 35 OUT ENA ENAN SWITCHe
******************************************************************************************
**Short to Battery Flag**
Vstb1 46 GND dc 0.11
Vstb2 47 GND dc 0.11
R20 44 46 Rideal 152
R21 45 47 Rideal 152
S7 44 STB INP GND SWITCHstb
S8 45 STB INN GND SWITCHstb
******************************************************************************************
**Models**
.model SWITCHe vswitch(Von=5,Voff=0,ron=0.01,roff=1e06)
.model SWITCHstb vswitch(Von=11.5,Voff=10.5,ron=0.01,roff=1e016)
.model DIODE D
.model DNOISE D(KF=1.375e03)
.model Rideal res(T_ABS=-273)
.ends ADA4830*TEST3 Macro-model
*Function:Amplifier
*
*Revision History:
*Rev.2.1 Nov 2016-JL
*Power Down Function Updated - 11/21/2016 (JL)
*Copyright 2016 by Analog Devices
*
*Refer to http://www.analog.com/Analog_Root/static/techSupport/designTools/spicemodels/license
*for License Statement. Use of this model indicates your acceptance
*of the terms and provisions in the License Staement.
*
*Tested on MultSIm, SiMetrix(NGSpice), PSpice
*
*Not modeled: Distortion, PSRR, Overload Recovery,
* Shutdown Turn On/Turn Off time, CMRR
*
*Parameters modeled include:
* Vos, Ibias, Input CM limits and Typ output voltge swing over full supply range,
* Open Loop Gain & Phase, Slew Rate, Output current limits, Voltage & Current Noise over temp,
* Capacitive load drive, Quiescent and dynamic supply currents,
* Shut Down pin functionality where applicable,
* Single supply & offset supply functionality.
*
*Removed FB pin for LTSPICE (temporary)
*
*Node Assignments
* Non-Inverting Input
* | Inverting Input
* | | Positive supply
* | | | Negative supply
* | | | | Output
* | | | | |
* | | | | | PD
* | | | | | |
.Subckt ADA4857 100 101 102 103 104 106
*
***Power Supplies***
Rz1 102 1020 Rideal 1e-6
Rz2 103 1030 Rideal 1e-6
Ibias 1020 1030 dc 0.35e-3
DzPS 98 1020 diode
Iquies 1020 98 dc 4.65e-3
S1 98 1030 113 106 Switch
R1 1020 99 Rideal 1e7
R2 99 1030 Rideal 1e7
e1 111 110 1020 110 1
e2 110 112 110 1030 1
e3 110 0 99 0 1
*
*
***Inputs***
S2 1 100 113 106 Switch
S3 9 101 113 106 Switch
VOS 1 2 dc 2e-3
IbiasP 110 2 dc -2e-6
IbiasN 110 9 dc -2e-6
RinCMP 110 2 Rideal 8e6
RinCMN 9 110 Rideal 8e6
CinCMP 110 2 0.4e-12
CinCMN 9 110 0.4e-12
IOS 9 2 0.05e-6
RinDiff 9 2 Rideal 4000e3
CinDiff 9 2 0.25e-12
*
*
***Non-Inverting Input with Clamp***
g1 3 110 110 2 0.001
RInP 3 110 Rideal 1e3
RX1 40 3 Rideal 0.001
DInP 40 41 diode
DInN 42 40 diode
VinP 111 41 dc 1.46
VinN 42 112 dc 1.46
*
*
***Vnoise***
hVn 6 5 Vmeas1 707.10678
Vmeas1 20 110 DC 0
Vvn 21 110 dc 0.65
Dvn 21 20 DVnoisy
hVn1 6 7 Vmeas2 707.10678
Vmeas2 22 110 dc 0
Vvn1 23 110 dc 0.65
Dvn1 23 22 DVnoisy
*
*
***Inoise***
FnIN 9 110 Vmeas3 0.7071068
Vmeas3 51 110 dc 0
VnIN 50 110 dc 0.65
DnIN 50 51 DINnoisy
FnIN1 110 9 Vmeas4 0.7071068
Vmeas4 53 110 dc 0
VnIN1 52 110 dc 0.65
DnIN1 52 53 DINnoisy
*
FnIP 2 110 Vmeas5 0.7071068
Vmeas5 31 110 dc 0
VnIP 30 110 dc 0.65
DnIP 30 31 DIPnoisy
FnIP1 110 2 Vmeas6 0.7071068
Vmeas6 33 110 dc 0
VnIP1 32 110 dc 0.65
DnIP1 32 33 DIPnoisy
*
*
***CMRR***
RcmrrP 3 10 Rideal 1e12
RcmrrN 10 9 Rideal 1e12
g10 11 110 10 110 -1e-10
Lcmrr 11 12 1e-12
Rcmrr 12 110 Rideal 1e3
e4 5 3 11 110 1
*
*
***Power Down***
VPD 111 80 dc 2
VPD1 81 0 dc 2.2
RPD 111 106 Rideal 0.2e6
ePD 80 113 82 0 1
RDP1 82 0 Rideal 1e3
CPD 82 0 1e-10
S5 81 82 83 113 Switch
CDP1 83 0 1e-12
RPD2 106 83 1e6
*
*
***Feedback Pin***
RF 105 104 Rideal 0.001
*
*
***VFB Stage***
g200 200 110 7 9 1
R200 200 110 Rideal 250
DzSlewP 201 200 DzSlewP
DzSlewN 201 110 DzSlewN
*
*
***Dominant Pole at 613 Hz***
g210 210 110 200 110 10.9069e-6
R210 210 110 Rideal 0.26e6
C210 210 110 1e-012
*
*
***Output Voltage Clamp-1***
RX2 60 210 Rideal 0.001
DzVoutP 61 60 DzVoutP
DzVoutN 60 62 DzVoutN
DVoutP 61 63 diode
DVoutN 64 62 diode
VoutP 65 63 dc 6.567
VoutN 64 66 dc 6.567
e60 65 110 111 110 1.209
e61 66 110 112 110 1.209
*
*
***Pole at 810MHz***
g220 220 110 210 110 0.001
R220 220 110 Rideal 1000
C220 220 110 0.1965e-12
*
***Pole at 12200MHz***
g230 230 110 220 110 0.001
R230 230 110 Rideal 1000
C230 230 110 0.013e-12
*
***Buffer***
g240 240 110 230 110 0.001
R240 240 110 Rideal 1000
*
***Buffer***
g245 245 110 240 110 0.001
R245 245 110 Rideal 1000
*
***Buffer***
g250 250 110 245 110 0.001
R250 250 110 Rideal 1000
*
***Buffer***
g255 255 110 250 110 0.001
R255 255 110 Rideal 1000
*
***Buffer***
g260 260 110 255 110 0.001
R260 260 110 Rideal 1000
*
***Buffer***
g265 265 110 260 110 0.001
R265 265 110 Rideal 1000
*
***Buffer***
g270 270 110 265 110 0.001
R270 270 110 Rideal 1000
*
***Buffer***
e280 280 110 270 110 1
R280 280 285 Rideal 10
*
***Peak: f=3100MHz, Zeta=1.6, Gain=2.6dB***
e290 290 110 285 110 1
R290 290 292 Rideal 10
L290 290 291 0.16e-9
C290 291 292 16.429e-12
R291 292 110 Rideal 28.656
e295 295 110 292 110 1.349
*
*
***Output Stage***
g300 300 110 295 110 0.001
R300 300 110 Rideal 1000
e301 301 110 300 110 1
Rout 302 303 Rideal 19
Lout 303 310 3.6e-9
Cout 310 110 1.25e-12
*
*
***Output Current Limit***
H1 301 304 Vsense1 100
Vsense1 301 302 dc 0
VIoutP 305 304 dc 11.836
VIoutN 304 306 dc 11.836
DIoutP 307 305 diode
DIoutN 306 307 diode
Rx3 307 300 Rideal 0.001
*
*
***Output Clamp-2***
VoutP1 111 73 dc 1.685
VoutN1 74 112 dc 1.685
DVoutP1 75 73 diode
DVoutN1 74 75 diode
RX4 75 310 Rideal 0.001
*
*
***Supply Currents***
FIoVcc 314 110 Vmeas8 1
Vmeas8 310 311 dc 0
R314 110 314 Rideal 1e9
DzOVcc 110 314 diode
DOVcc 102 314 diode
RX5 311 312 Rideal 0.001
FIoVee 315 110 Vmeas9 1
Vmeas9 312 313 dc 0
R315 315 110 Rideal 1e9
DzOVee 315 110 diode
DOVee 315 103 diode
*
*
***Output Switch***
S4 104 313 113 106 Switch
*
*
*** Common Models ***
.model diode d(bv=100)
.model Switch vswitch(Von=2.205,Voff=2.195,ron=0.001,roff=1e6)
.model DzVoutP D(BV=4.3)
.model DzVoutN D(BV=4.3)
.model DzSlewP D(BV=257.194)
.model DzSlewN D(BV=257.194)
.model DVnoisy D(IS=5.51e-16 KF=1.09e-14)
.model DINnoisy D(IS=7.97e-17 KF=2.45e-15)
.model DIPnoisy D(IS=7.97e-17 KF=2.45e-15)
.model Rideal res(T_ABS=-273)
*
.ends
*
*
* Copyright (c) 1998-2021 Analog Devices, Inc. All rights reserved.
*
.subckt ADA4860 1 2 3 4 5 6
Cinp INp 0 {Cinp} Rpar={Rinp} Noiseless
Ibp INp 0 {Ibp}
Ibn N003 0 {Ibn}
Berr 0 Err I=(V(Binp,Binn)/{Rinn})*V(GO) Rpar=1
Ro N007 N003 {Rinn} Noiseless
G1 0 N004 Zol5 0 10
R1 N004 0 100m Noiseless
A1 6 4 0 0 0 _PD 0 0 SCHMITT Vt={PDVt} Vh=10m Trise={PDTon*2} Tfall={PDToff*2} Vlow=0 Vhigh=1
A2 0 N003 0 0 0 0 0 0 OTA G=0 In={Inn} Ink={Inkn}
A3 0 INp 0 0 0 0 0 0 OTA G=0 In={Inp} Ink={Inkp}
G3 0 Zol2 Vclamp 0 1m
C1 Zol2 0 {Cfp2} Rpar=1k Noiseless
G4 0 Zol3 Zol2 0 1m
C2 Zol3 0 {Cfp2} Rpar=1k Noiseless
Cinn N003 0 {Cinn}
Binp 0 Binp I=Uplim(Dnlim(V(INp)+{Vos}, V(Vcm_min), 0.3), V(Vcm_max), 0.3) Rpar=1
Binn 0 Binn I=Uplim(Dnlim(V(2), V(Vcm_min), 0.3), V(Vcm_max), 0.3) Rpar=1
R2 Zol1 0 {Zol} Noiseless
R3 N003 2 1µ Noiseless
R4 INp 1 1µ Noiseless
Bpd 6 0 I={Ipd_off}+V(_PD)* {Ipd_on-Ipd_off}
Bq 3 4 I={Iq_off}+V(_PD)* {Iq_on-Iq_off}+V(Imon)
G7 0 Vs 3 4 1m
R9 Vs 0 1k Noiseless
A7 VminGD 0 _PD 0 VmaxGD 0 GO 0 AND Tau=1n
A5 Vs 0 0 0 0 0 VminGD 0 SCHMITT Vt={Vsmin-50m} Vh=10m Tau=1n
A6 Vs 0 0 0 0 VmaxGD 0 0 SCHMITT Vt={Vsmax-50m} Vh=10m Tau=1n
R_Iout N004 N002 1µ
Bimon 0 Imon I=1m*I(R_Iout) Rpar=1k Cpar=1p
Bhi 0 Hi I=1m*(V(3)-Table(V(Imon), 4m, 0.9, 20m, 1.9, 27m, 3, 85m, 5)) Rpar=1k
Blo 0 Lo I=1m*(V(4)+Table(-V(Imon), 4m, 0.9, 20m, 1.9, 27m, 3, 85m, 5)) Rpar=1k
A4 0 Err 0 0 0 0 Zol1 0 OTA G=1 Cout={Cfp1} Asym Isrc={Isrc} Isink={Isink} En={En} Enk={Enk} Vhigh=1e308 Vlow=-1e308
BVclamp 0 Vclamp I=1m*Uplim(Dnlim(V(ZOL1), V(Lo), 0.3), V(Hi), 0.3) Rpar=1k
D2 N002 5 Iscp
D1 5 N002 Iscn
G11 0 Zol4 Zol3 0 1m
C8 Zol4 0 {Cfp2} Rpar=1k Noiseless
G12 0 Zol5 Zol4 0 1m
C9 Zol5 0 {Cfp2} Rpar=1k Noiseless
Bbuf 0 N007 I=(V(INp) +{Vos})*V(GO)
R11 N007 0 1
BVcm_min 0 Vcm_min I=V(4)+{Vcm_min} Rpar=1
BVcm_max 0 Vcm_max I=V(3)+{Vcm_max} Rpar=1
.param Rinp=12Meg Cinp=1.5p
.param Rinn=90 Cinn=680f
.param Zol=700k fp1=260k fp2=3.2G fp3=1T
.param SRp=980 SRn=-790
.param En=4n Enk=450
.param Inp=1.5p Inkp=7k
.param Inn=7.7p Inkn=1.75k
.param Vcm_min=1.2 Vcm_max=-1.3
.param Vos=-3.5m
.param Ibp=-1u Ibn=1.5u
.param PDVt=0.6 PDTon=200n PDToff=3.5u
.param Ipd_on=130u Ipd_off=-250n
.param Iq_on=6m Iq_off=250u
.param Vsmin=5 Vsmax=12
.param Iscp=85m Iscn=-85m
.param Cfp1 = {1 / (2 * pi * fp1 * Zol)}
.param Cfp2 = {1 / (2 * pi * fp2 * 1k)}
.param Cfp3 = {1 / (2 * pi * fp3 * 1k)}
.param Isrc = {Cfp1 * SRp * 1e6}
.param Isink= {Cfp1 * SRn * 1e6}
.model Iscp D(Ron=1m Roff=1G Ilimit={Iscp} Epsilon=50m)
.model Iscn D(Ron=1m Roff=1G Ilimit={-Iscn} Epsilon=50m)
.ends ADA4860
*
*
.subckt ADA4530-1 1 2 3 4 5 6
B1 0 N004 I=10u*dnlim(uplim(V(1),V(3)-1.4,.1), V(4)-.2, .1)+1n*V(1)
B2 N004 0 I=10u*dnlim(uplim(V(2),V(3)-1.39,.1), V(4)-.21, .1)+1n*V(2)
C10 N004 0 1f Rpar=100K noiseless
D9 N008 0 DLIM
C13 3 4 10p
A1 0 2 0 0 0 0 0 0 OTA g=0 in=.07f
G1 0 N016 5 Mid 100m
C8 N008 N016 38p
C6 2 4 4p Rser=100k noiseless
A4 N004 0 0 0 0 0 N007 0 OTA g=1m linear enk=330 en=13.8n*(1+freq/5Meg) Rout=1k Cout=15p Vlow=-1e308 Vhigh=1e308
C7 3 2 4p Rser=100k noiseless
A7 0 N006 0 0 0 0 N008 0 OTA g=500u linear Cout=10f Vhigh=1e308 Vlow=-1e308
D3 3 4 DBURN
G5 0 Mid 3 0 .5m
G6 0 Mid 4 0 .5m
R4 Mid 0 1K noiseless
M1 5 N014 4 4 NI temp=27 M=10
C2 3 5 1p Rpar=1G Rser=10k noiseless
M2 5 N009 3 3 PI temp=27 M=10
A2 3 N009 4 4 4 4 N014 4 OTA g=1u linear ref=1.4 vlow=0 vhigh=3.4
C3 3 N009 1f Rpar=1Meg Rser=500k noiseless
A3 0 N010 3 3 3 3 N009 3 OTA g=20u linear ref=-37.7515m vlow=-3.5 vhigh=2.5
C11 N014 4 1p Rpar=1Meg Rser=10Meg noiseless
D4 5 4 DoutMin
D5 3 5 DoutMin
S1 N008 0 4 3 SNLG
C4 3 1 4p Rser=100k noiseless
C5 1 4 4p Rser=100k noiseless
C12 N008 0 2p
C19 N009 5 1.5p Rser=75k noiseless
M3 3 N011 6 6 NG temp=27
M4 4 N011 6 6 PG temp=27
C17 3 6 500f
C21 6 4 500f
C22 N011 Mid 28.937f Rpar=2Meg noiseless
G3 Mid N011 1 Mid 1µ
S2 N011 Mid N011 3 Suplim
A5 1 0 0 0 0 0 0 0 OTA g=0 in=.07f
D6 2 6 DIN
D7 6 1 DIN
C23 2 6 200f
C25 6 1 200f
C14 N016 0 3n Rser=20 Rpar=10 noiseless
C9 5 4 1p Rpar=1G Rser=10k noiseless
A6 0 N005 0 0 0 0 N006 0 OTA g=1m linear Rout=1k Cout=15p vlow=-105.5m vhigh=105.5m
C15 N005 0 15p Rpar=1k noiseless
A9 0 N008 0 0 0 0 N010 0 OTA g=20m iout=1m Rout=1k Cout=40p vlow=-1e308 vhigh=1e308
G2 0 N005 N007 0 1m
C1 5 N014 1.5p Rser=1Meg noiseless
.model DBURN D(Ron=100 Roff=1G vfwd=600m epsilon=500m ilimit=703.57u noiseless)
.model DoutMin D(Ron=100 Roff=100 ilimit=20u noiseless)
.model SNLG SW(level=2 Ron=2Meg Roff=50Meg vt=-3 vh=-1.5 noiseless)
.param CL=10p
.model PI VDMOS(kp=280u vto=-500m mtriode=2.3 ksubthres=100m pchan noiseless)
.model NI VDMOS(kp=700u vto=500m mtriode=1.6 ksubthres=100m noiseless)
.model DLIM D(Ron=1k Roff=2G Vfwd=1.8 Vrev=1.8 epsilon=100m revepsilon=100m noiseless)
.model PG VDMOS(kp=1.72m vto=300m mtriode=2 ksubthres=100m pchan noiseless)
.model NG VDMOS(kp=1.72m vto=-300m ksubthres=100m noiseless)
.model Suplim SW(Ron=1 Roff=2Meg vt=-1.39 vh=-100m noiseless)
.model DIN D(Ron=1k Roff=30T vfwd=600m epsilon=300m vrev=600m revepsilon=300m noiseless)
.ends ADA4530-1
*
*
*
.subckt ADA4530 1 2 3 4 5 6
B1 0 N004 I=10u*dnlim(uplim(V(1),V(3)-1.4,.1), V(4)-.2, .1)+1n*V(1)
B2 N004 0 I=10u*dnlim(uplim(V(2),V(3)-1.39,.1), V(4)-.21, .1)+1n*V(2)
C10 N004 0 1f Rpar=100K noiseless
D9 N008 0 DLIM
C13 3 4 10p
A1 0 2 0 0 0 0 0 0 OTA g=0 in=.07f
G1 0 N016 5 Mid 100m
C8 N008 N016 38p
C6 2 4 4p Rser=100k noiseless
A4 N004 0 0 0 0 0 N007 0 OTA g=1m linear enk=330 en=13.8n*(1+freq/5Meg) Rout=1k Cout=15p Vlow=-1e308 Vhigh=1e308
C7 3 2 4p Rser=100k noiseless
A7 0 N006 0 0 0 0 N008 0 OTA g=500u linear Cout=10f Vhigh=1e308 Vlow=-1e308
D3 3 4 DBURN
G5 0 Mid 3 0 .5m
G6 0 Mid 4 0 .5m
R4 Mid 0 1K noiseless
M1 5 N014 4 4 NI temp=27 M=10
C2 3 5 1p Rpar=1G Rser=10k noiseless
M2 5 N009 3 3 PI temp=27 M=10
A2 3 N009 4 4 4 4 N014 4 OTA g=1u linear ref=1.4 vlow=0 vhigh=3.4
C3 3 N009 1f Rpar=1Meg Rser=500k noiseless
A3 0 N010 3 3 3 3 N009 3 OTA g=20u linear ref=-37.7515m vlow=-3.5 vhigh=2.5
C11 N014 4 1p Rpar=1Meg Rser=10Meg noiseless
D4 5 4 DoutMin
D5 3 5 DoutMin
S1 N008 0 4 3 SNLG
C4 3 1 4p Rser=100k noiseless
C5 1 4 4p Rser=100k noiseless
C12 N008 0 2p
C19 N009 5 1.5p Rser=75k noiseless
M3 3 N011 6 6 NG temp=27
M4 4 N011 6 6 PG temp=27
C17 3 6 500f
C21 6 4 500f
C22 N011 Mid 28.937f Rpar=2Meg noiseless
G3 Mid N011 1 Mid 1µ
S2 N011 Mid N011 3 Suplim
A5 1 0 0 0 0 0 0 0 OTA g=0 in=.07f
D6 2 6 DIN
D7 6 1 DIN
C23 2 6 200f
C25 6 1 200f
C14 N016 0 3n Rser=20 Rpar=10 noiseless
C9 5 4 1p Rpar=1G Rser=10k noiseless
A6 0 N005 0 0 0 0 N006 0 OTA g=1m linear Rout=1k Cout=15p vlow=-105.5m vhigh=105.5m
C15 N005 0 15p Rpar=1k noiseless
A9 0 N008 0 0 0 0 N010 0 OTA g=20m iout=1m Rout=1k Cout=40p vlow=-1e308 vhigh=1e308
G2 0 N005 N007 0 1m
C1 5 N014 1.5p Rser=1Meg noiseless
.model DBURN D(Ron=100 Roff=1G vfwd=600m epsilon=500m ilimit=703.57u noiseless)
.model DoutMin D(Ron=100 Roff=100 ilimit=20u noiseless)
.model SNLG SW(level=2 Ron=2Meg Roff=50Meg vt=-3 vh=-1.5 noiseless)
.param CL=10p
.model PI VDMOS(kp=280u vto=-500m mtriode=2.3 ksubthres=100m pchan noiseless)
.model NI VDMOS(kp=700u vto=500m mtriode=1.6 ksubthres=100m noiseless)
.model DLIM D(Ron=1k Roff=2G Vfwd=1.8 Vrev=1.8 epsilon=100m revepsilon=100m noiseless)
.model PG VDMOS(kp=1.72m vto=300m mtriode=2 ksubthres=100m pchan noiseless)
.model NG VDMOS(kp=1.72m vto=-300m ksubthres=100m noiseless)
.model Suplim SW(Ron=1 Roff=2Meg vt=-1.39 vh=-100m noiseless)
.model DIN D(Ron=1k Roff=30T vfwd=600m epsilon=300m vrev=600m revepsilon=300m noiseless)
.ends ADA4530
*