276 lines
8.0 KiB
Python
276 lines
8.0 KiB
Python
# %% imports
|
|
import copy
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import adi
|
|
import iio
|
|
import numpy as np
|
|
import skrf as rf
|
|
import xarray as xr
|
|
from matplotlib import pyplot as plt
|
|
from matplotlib.ticker import EngFormatter
|
|
from numpy import typing as npt
|
|
from scipy import signal
|
|
from util import HAM_BANDS, db20, net2s, s2net
|
|
|
|
dir_ = Path(__file__).parent
|
|
|
|
|
|
# https://wiki.analog.com/resources/tools-software/linux-drivers/iio-transceiver/ad9361-customization
|
|
|
|
|
|
# %% helper functions
|
|
def get_config(sdr: adi.ad9361):
|
|
config = dict()
|
|
config["rx_lo"] = sdr.rx_lo
|
|
config["rx_rf_bandwidth"] = sdr.rx_rf_bandwidth
|
|
config["rx_enabled_channels"] = sdr.rx_enabled_channels
|
|
for chan in config["rx_enabled_channels"]:
|
|
config[f"rx_hardwaregain_chan{chan}"] = getattr(sdr, f"rx_hardwaregain_chan{chan}")
|
|
config[f"gain_control_mode_chan{chan}"] = getattr(sdr, f"gain_control_mode_chan{chan}")
|
|
|
|
config["tx_lo"] = sdr.tx_lo
|
|
config["tx_rf_bandwidth"] = sdr.tx_rf_bandwidth
|
|
config["tx_cyclic_buffer"] = sdr.tx_cyclic_buffer
|
|
config["tx_enabled_channels"] = sdr.tx_enabled_channels
|
|
for chan in config["tx_enabled_channels"]:
|
|
config[f"tx_hardwaregain_chan{chan}"] = getattr(sdr, f"tx_hardwaregain_chan{chan}")
|
|
|
|
config["filter"] = sdr.filter
|
|
config["sample_rate"] = sdr.sample_rate
|
|
config["loopback"] = sdr.loopback
|
|
|
|
return config
|
|
|
|
|
|
def generate_tone(f: float, N: int = 1024, fs: Optional[float] = None):
|
|
if fs is None:
|
|
fs = sdr.sample_rate
|
|
fs = int(fs)
|
|
fc = int(f / (fs / N)) * (fs / N)
|
|
ts = 1 / float(fs)
|
|
t = np.arange(0, N * ts, ts)
|
|
i = np.cos(2 * np.pi * t * fc) * 2**14
|
|
q = np.sin(2 * np.pi * t * fc) * 2**14
|
|
iq = i + 1j * q
|
|
|
|
return iq
|
|
|
|
|
|
# %% connection
|
|
sdr = adi.ad9361(uri="ip:192.168.3.1")
|
|
|
|
# %% verify device configuration
|
|
mode_2r2t = bool(sdr._get_iio_debug_attr("adi,2rx-2tx-mode-enable"))
|
|
if not mode_2r2t:
|
|
raise ValueError("'adi,2rx-2tx-mode-enable' is not set in pluto. See README.md for instructions for changing this")
|
|
# TODO: it might be possible to change this on the fly. I think we'll actually just fail in __init__ for sdr
|
|
|
|
# %% switch control outputs
|
|
# NOTE: this doesn't appear to work
|
|
sdr._set_iio_debug_attr_str("adi,gpo-manual-mode-enable", "1")
|
|
sdr._get_iio_debug_attr_str("adi,gpo-manual-mode-enable-mask")
|
|
# but direct register access does
|
|
# https://ez.analog.com/linux-software-drivers/f/q-a/120853/control-fmcomms3-s-gpo-with-python
|
|
ctx = iio.Context("ip:192.168.3.1")
|
|
ctrl = ctx.find_device("ad9361-phy")
|
|
# https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf
|
|
ctrl.reg_write(0x26, 0x90) # bit 7: AuxDAC Manual, bit 4: GPO Manual
|
|
ctrl.reg_write(0x27, 0x10) # bits 7-4: GPO3-0
|
|
|
|
|
|
# %% initialization
|
|
sdr.rx_lo = int(2.0e9)
|
|
sdr.tx_lo = int(2.0e9)
|
|
sdr.sample_rate = 30e6
|
|
sdr.rx_rf_bandwidth = int(4e6)
|
|
sdr.tx_rf_bandwidth = int(4e6)
|
|
sdr.rx_destroy_buffer()
|
|
sdr.tx_destroy_buffer()
|
|
sdr.rx_enabled_channels = [0, 1]
|
|
sdr.tx_enabled_channels = [0]
|
|
sdr.loopback = 0
|
|
sdr.gain_control_mode_chan0 = "manual"
|
|
sdr.gain_control_mode_chan1 = "manual"
|
|
sdr.rx_hardwaregain_chan0 = 40
|
|
sdr.rx_hardwaregain_chan1 = 40
|
|
sdr.tx_hardwaregain_chan0 = -10
|
|
|
|
config = get_config(sdr)
|
|
config
|
|
|
|
# %%
|
|
sdr.tx_destroy_buffer() # must destroy buffer before changing cyclicity
|
|
sdr.tx_cyclic_buffer = True
|
|
sdr.tx(generate_tone(1e6))
|
|
|
|
# %%
|
|
sdr.rx_destroy_buffer()
|
|
data = sdr.rx()
|
|
|
|
# %% Plot in time
|
|
fig, axs = plt.subplots(2, 1, sharex=True, tight_layout=True)
|
|
axs[0].plot(np.real(data).T)
|
|
axs[1].plot(np.imag(data).T)
|
|
axs[0].set_ylabel("Real")
|
|
axs[1].set_ylabel("Imag")
|
|
axs[-1].set_xlabel("Time")
|
|
fig.show()
|
|
|
|
# %% Plot in frequency
|
|
f, Pxx_den = signal.periodogram(data, sdr.sample_rate, axis=-1, return_onesided=False)
|
|
plt.figure()
|
|
for cc, chan in enumerate(sdr.rx_enabled_channels):
|
|
plt.semilogy(f, Pxx_den[cc], label=f"Channel {chan}")
|
|
plt.legend()
|
|
plt.ylim([1e-7, 1e2])
|
|
plt.xlabel("frequency [Hz]")
|
|
plt.ylabel("PSD [V**2/Hz]")
|
|
plt.grid(True)
|
|
plt.show()
|
|
|
|
|
|
# %% TX helper functions
|
|
def set_output_power(power: float):
|
|
if power == -5:
|
|
# FIXME: this is a hack because I don't want to go through re-calibration
|
|
tx_gain = -8
|
|
else:
|
|
raise NotImplementedError()
|
|
# # TODO: correct over frequency
|
|
# tx_gain_idx = np.abs(pout.sel(tx_channel=0) - power).argmin(dim="tx_gain")
|
|
# tx_gain = pout.coords["tx_gain"][tx_gain_idx]
|
|
sdr.tx_hardwaregain_chan0 = float(tx_gain)
|
|
|
|
|
|
def set_output(frequency: float, power: float, offset_frequency: float = 1e6):
|
|
sdr.tx_destroy_buffer()
|
|
set_output_power(power)
|
|
sdr.tx_lo = int(frequency - offset_frequency)
|
|
offset_frequency = frequency - sdr.tx_lo
|
|
sdr.tx_cyclic_buffer = True
|
|
sdr.tx(generate_tone(offset_frequency))
|
|
|
|
|
|
# %%
|
|
def vna_capture(frequency: npt.ArrayLike):
|
|
s = xr.DataArray(
|
|
np.empty(len(frequency), dtype=np.complex128),
|
|
dims=["frequency"],
|
|
coords=dict(
|
|
frequency=frequency,
|
|
),
|
|
)
|
|
for freq in s.frequency.data:
|
|
set_output(frequency=freq, power=-5)
|
|
sdr.rx_destroy_buffer()
|
|
sdr.rx_lo = int(freq)
|
|
sdr.rx_enabled_channels = [0, 1]
|
|
sdr.gain_control_mode_chan0 = "manual"
|
|
sdr.gain_control_mode_chan1 = "manual"
|
|
sdr.rx_hardwaregain_chan0 = 40
|
|
sdr.rx_hardwaregain_chan1 = 40
|
|
rx = sdr.rx()
|
|
s.loc[dict(frequency=freq)] = np.mean(rx[1] / rx[0])
|
|
|
|
return s
|
|
|
|
|
|
# %%
|
|
s = vna_capture(frequency=np.linspace(70e6, 200e6, 101))
|
|
|
|
# %% Plot Logmag
|
|
fig, axs = plt.subplots(2, 1, sharex=True, tight_layout=True)
|
|
|
|
axs[0].plot(s.frequency, db20(s), label="Measured")
|
|
axs[1].plot(s.frequency, np.rad2deg(np.angle((s))), label="Measured")
|
|
|
|
axs[0].grid(True)
|
|
axs[1].grid(True)
|
|
|
|
axs[0].set_ylim(-80, 0)
|
|
axs[1].set_ylim(-200, 200)
|
|
axs[1].set_xlim(np.min(s.frequency), np.max(s.frequency))
|
|
axs[1].xaxis.set_major_formatter(EngFormatter(places=1))
|
|
axs[1].set_xlabel("Frequency")
|
|
|
|
axs[0].set_ylabel("|S11| [dB]")
|
|
axs[1].set_ylabel("∠S11 [deg]")
|
|
|
|
reference_sparams = None
|
|
reference_sparams = dir_ / "RBP-135+_Plus25degC.s2p"
|
|
if reference_sparams is not None:
|
|
ref = rf.Network(reference_sparams)
|
|
rbp135 = net2s(ref)
|
|
|
|
axs[0].plot(rbp135.frequency, db20(rbp135.sel(m=1, n=1)), label="Datasheet")
|
|
axs[1].plot(rbp135.frequency, np.rad2deg(np.angle(rbp135.sel(m=2, n=1))), label="Datasheet")
|
|
axs[0].legend()
|
|
axs[1].legend()
|
|
|
|
plt.show()
|
|
|
|
|
|
# %% SOL calibration
|
|
cal_frequency = np.linspace(70e6, 600e6, 101)
|
|
ideal_cal_frequency = rf.Frequency(np.min(cal_frequency), np.max(cal_frequency), len(cal_frequency))
|
|
input("Connect SHORT and press ENTER...")
|
|
short = vna_capture(frequency=cal_frequency)
|
|
input("Connect OPEN and press ENTER...")
|
|
open = vna_capture(frequency=cal_frequency)
|
|
input("Connect LOAD and press ENTER...")
|
|
load = vna_capture(frequency=cal_frequency)
|
|
|
|
short_net = s2net(short)
|
|
open_net = s2net(open)
|
|
load_net = s2net(load)
|
|
|
|
cal_ideal = rf.media.DefinedGammaZ0(frequency=ideal_cal_frequency)
|
|
calibration = rf.calibration.OnePort(
|
|
[short_net, open_net, load_net],
|
|
[cal_ideal.short(), cal_ideal.open(), cal_ideal.load(0)],
|
|
)
|
|
|
|
|
|
# %%
|
|
s = vna_capture(frequency=cal_frequency)
|
|
|
|
# %%
|
|
s_calibrated = calibration.apply_cal(s2net(s))
|
|
|
|
plt.figure()
|
|
s_calibrated.plot_s_smith()
|
|
# ref.plot_s_smith(m=1, n=1)
|
|
plt.show()
|
|
|
|
plt.figure()
|
|
for start, stop in HAM_BANDS:
|
|
plt.axvspan(start, stop, alpha=0.1, color="k")
|
|
s_calibrated.plot_s_db()
|
|
# ref.plot_s_db(m=1, n=1)
|
|
plt.gca().xaxis.set_major_formatter(EngFormatter())
|
|
plt.grid(True)
|
|
plt.xlim(s_calibrated.f[0], s_calibrated.f[-1])
|
|
plt.show()
|
|
|
|
plt.figure()
|
|
for start, stop in HAM_BANDS:
|
|
plt.axvspan(start, stop, alpha=0.1, color="k")
|
|
# s_calibrated.plot_s_vswr()
|
|
# drop invalid points
|
|
vswr = copy.deepcopy(s_calibrated.s_vswr[:, 0, 0])
|
|
vswr[vswr < 1] = np.nan
|
|
plt.plot(s_calibrated.f, vswr)
|
|
plt.axhline(1, color="k", linestyle="--")
|
|
plt.ylabel("VSWR")
|
|
plt.xlabel("Frequency [Hz]")
|
|
# ref.plot_s_vswr(m=1, n=1)
|
|
plt.gca().xaxis.set_major_formatter(EngFormatter())
|
|
plt.grid(True)
|
|
plt.ylim(0, 10)
|
|
plt.xlim(s_calibrated.f[0], s_calibrated.f[-1])
|
|
plt.show()
|
|
|
|
# %%
|