charon_vna/charon_vna/vna.py

276 lines
8.0 KiB
Python

# %% imports
import copy
from pathlib import Path
from typing import Optional
import adi
import iio
import numpy as np
import skrf as rf
import xarray as xr
from matplotlib import pyplot as plt
from matplotlib.ticker import EngFormatter
from numpy import typing as npt
from scipy import signal
from util import HAM_BANDS, db20, net2s, s2net
dir_ = Path(__file__).parent
# https://wiki.analog.com/resources/tools-software/linux-drivers/iio-transceiver/ad9361-customization
# %% helper functions
def get_config(sdr: adi.ad9361):
config = dict()
config["rx_lo"] = sdr.rx_lo
config["rx_rf_bandwidth"] = sdr.rx_rf_bandwidth
config["rx_enabled_channels"] = sdr.rx_enabled_channels
for chan in config["rx_enabled_channels"]:
config[f"rx_hardwaregain_chan{chan}"] = getattr(sdr, f"rx_hardwaregain_chan{chan}")
config[f"gain_control_mode_chan{chan}"] = getattr(sdr, f"gain_control_mode_chan{chan}")
config["tx_lo"] = sdr.tx_lo
config["tx_rf_bandwidth"] = sdr.tx_rf_bandwidth
config["tx_cyclic_buffer"] = sdr.tx_cyclic_buffer
config["tx_enabled_channels"] = sdr.tx_enabled_channels
for chan in config["tx_enabled_channels"]:
config[f"tx_hardwaregain_chan{chan}"] = getattr(sdr, f"tx_hardwaregain_chan{chan}")
config["filter"] = sdr.filter
config["sample_rate"] = sdr.sample_rate
config["loopback"] = sdr.loopback
return config
def generate_tone(f: float, N: int = 1024, fs: Optional[float] = None):
if fs is None:
fs = sdr.sample_rate
fs = int(fs)
fc = int(f / (fs / N)) * (fs / N)
ts = 1 / float(fs)
t = np.arange(0, N * ts, ts)
i = np.cos(2 * np.pi * t * fc) * 2**14
q = np.sin(2 * np.pi * t * fc) * 2**14
iq = i + 1j * q
return iq
# %% connection
sdr = adi.ad9361(uri="ip:192.168.3.1")
# %% verify device configuration
mode_2r2t = bool(sdr._get_iio_debug_attr("adi,2rx-2tx-mode-enable"))
if not mode_2r2t:
raise ValueError("'adi,2rx-2tx-mode-enable' is not set in pluto. See README.md for instructions for changing this")
# TODO: it might be possible to change this on the fly. I think we'll actually just fail in __init__ for sdr
# %% switch control outputs
# NOTE: this doesn't appear to work
sdr._set_iio_debug_attr_str("adi,gpo-manual-mode-enable", "1")
sdr._get_iio_debug_attr_str("adi,gpo-manual-mode-enable-mask")
# but direct register access does
# https://ez.analog.com/linux-software-drivers/f/q-a/120853/control-fmcomms3-s-gpo-with-python
ctx = iio.Context("ip:192.168.3.1")
ctrl = ctx.find_device("ad9361-phy")
# https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf
ctrl.reg_write(0x26, 0x90) # bit 7: AuxDAC Manual, bit 4: GPO Manual
ctrl.reg_write(0x27, 0x10) # bits 7-4: GPO3-0
# %% initialization
sdr.rx_lo = int(2.0e9)
sdr.tx_lo = int(2.0e9)
sdr.sample_rate = 30e6
sdr.rx_rf_bandwidth = int(4e6)
sdr.tx_rf_bandwidth = int(4e6)
sdr.rx_destroy_buffer()
sdr.tx_destroy_buffer()
sdr.rx_enabled_channels = [0, 1]
sdr.tx_enabled_channels = [0]
sdr.loopback = 0
sdr.gain_control_mode_chan0 = "manual"
sdr.gain_control_mode_chan1 = "manual"
sdr.rx_hardwaregain_chan0 = 40
sdr.rx_hardwaregain_chan1 = 40
sdr.tx_hardwaregain_chan0 = -10
config = get_config(sdr)
config
# %%
sdr.tx_destroy_buffer() # must destroy buffer before changing cyclicity
sdr.tx_cyclic_buffer = True
sdr.tx(generate_tone(1e6))
# %%
sdr.rx_destroy_buffer()
data = sdr.rx()
# %% Plot in time
fig, axs = plt.subplots(2, 1, sharex=True, tight_layout=True)
axs[0].plot(np.real(data).T)
axs[1].plot(np.imag(data).T)
axs[0].set_ylabel("Real")
axs[1].set_ylabel("Imag")
axs[-1].set_xlabel("Time")
fig.show()
# %% Plot in frequency
f, Pxx_den = signal.periodogram(data, sdr.sample_rate, axis=-1, return_onesided=False)
plt.figure()
for cc, chan in enumerate(sdr.rx_enabled_channels):
plt.semilogy(f, Pxx_den[cc], label=f"Channel {chan}")
plt.legend()
plt.ylim([1e-7, 1e2])
plt.xlabel("frequency [Hz]")
plt.ylabel("PSD [V**2/Hz]")
plt.grid(True)
plt.show()
# %% TX helper functions
def set_output_power(power: float):
if power == -5:
# FIXME: this is a hack because I don't want to go through re-calibration
tx_gain = -8
else:
raise NotImplementedError()
# # TODO: correct over frequency
# tx_gain_idx = np.abs(pout.sel(tx_channel=0) - power).argmin(dim="tx_gain")
# tx_gain = pout.coords["tx_gain"][tx_gain_idx]
sdr.tx_hardwaregain_chan0 = float(tx_gain)
def set_output(frequency: float, power: float, offset_frequency: float = 1e6):
sdr.tx_destroy_buffer()
set_output_power(power)
sdr.tx_lo = int(frequency - offset_frequency)
offset_frequency = frequency - sdr.tx_lo
sdr.tx_cyclic_buffer = True
sdr.tx(generate_tone(offset_frequency))
# %%
def vna_capture(frequency: npt.ArrayLike):
s = xr.DataArray(
np.empty(len(frequency), dtype=np.complex128),
dims=["frequency"],
coords=dict(
frequency=frequency,
),
)
for freq in s.frequency.data:
set_output(frequency=freq, power=-5)
sdr.rx_destroy_buffer()
sdr.rx_lo = int(freq)
sdr.rx_enabled_channels = [0, 1]
sdr.gain_control_mode_chan0 = "manual"
sdr.gain_control_mode_chan1 = "manual"
sdr.rx_hardwaregain_chan0 = 40
sdr.rx_hardwaregain_chan1 = 40
rx = sdr.rx()
s.loc[dict(frequency=freq)] = np.mean(rx[1] / rx[0])
return s
# %%
s = vna_capture(frequency=np.linspace(70e6, 200e6, 101))
# %% Plot Logmag
fig, axs = plt.subplots(2, 1, sharex=True, tight_layout=True)
axs[0].plot(s.frequency, db20(s), label="Measured")
axs[1].plot(s.frequency, np.rad2deg(np.angle((s))), label="Measured")
axs[0].grid(True)
axs[1].grid(True)
axs[0].set_ylim(-80, 0)
axs[1].set_ylim(-200, 200)
axs[1].set_xlim(np.min(s.frequency), np.max(s.frequency))
axs[1].xaxis.set_major_formatter(EngFormatter(places=1))
axs[1].set_xlabel("Frequency")
axs[0].set_ylabel("|S11| [dB]")
axs[1].set_ylabel("∠S11 [deg]")
reference_sparams = None
reference_sparams = dir_ / "RBP-135+_Plus25degC.s2p"
if reference_sparams is not None:
ref = rf.Network(reference_sparams)
rbp135 = net2s(ref)
axs[0].plot(rbp135.frequency, db20(rbp135.sel(m=1, n=1)), label="Datasheet")
axs[1].plot(rbp135.frequency, np.rad2deg(np.angle(rbp135.sel(m=2, n=1))), label="Datasheet")
axs[0].legend()
axs[1].legend()
plt.show()
# %% SOL calibration
cal_frequency = np.linspace(70e6, 600e6, 101)
ideal_cal_frequency = rf.Frequency(np.min(cal_frequency), np.max(cal_frequency), len(cal_frequency))
input("Connect SHORT and press ENTER...")
short = vna_capture(frequency=cal_frequency)
input("Connect OPEN and press ENTER...")
open = vna_capture(frequency=cal_frequency)
input("Connect LOAD and press ENTER...")
load = vna_capture(frequency=cal_frequency)
short_net = s2net(short)
open_net = s2net(open)
load_net = s2net(load)
cal_ideal = rf.media.DefinedGammaZ0(frequency=ideal_cal_frequency)
calibration = rf.calibration.OnePort(
[short_net, open_net, load_net],
[cal_ideal.short(), cal_ideal.open(), cal_ideal.load(0)],
)
# %%
s = vna_capture(frequency=cal_frequency)
# %%
s_calibrated = calibration.apply_cal(s2net(s))
plt.figure()
s_calibrated.plot_s_smith()
# ref.plot_s_smith(m=1, n=1)
plt.show()
plt.figure()
for start, stop in HAM_BANDS:
plt.axvspan(start, stop, alpha=0.1, color="k")
s_calibrated.plot_s_db()
# ref.plot_s_db(m=1, n=1)
plt.gca().xaxis.set_major_formatter(EngFormatter())
plt.grid(True)
plt.xlim(s_calibrated.f[0], s_calibrated.f[-1])
plt.show()
plt.figure()
for start, stop in HAM_BANDS:
plt.axvspan(start, stop, alpha=0.1, color="k")
# s_calibrated.plot_s_vswr()
# drop invalid points
vswr = copy.deepcopy(s_calibrated.s_vswr[:, 0, 0])
vswr[vswr < 1] = np.nan
plt.plot(s_calibrated.f, vswr)
plt.axhline(1, color="k", linestyle="--")
plt.ylabel("VSWR")
plt.xlabel("Frequency [Hz]")
# ref.plot_s_vswr(m=1, n=1)
plt.gca().xaxis.set_major_formatter(EngFormatter())
plt.grid(True)
plt.ylim(0, 10)
plt.xlim(s_calibrated.f[0], s_calibrated.f[-1])
plt.show()
# %%