ECEN5458/Software/python/hwtest.py
2020-03-02 21:55:53 -07:00

194 lines
6.0 KiB
Python

import time
import numpy as np
import board
import busio
import digitalio
from adafruit_servokit import ServoKit
import adafruit_ads1x15.ads1015 as ADS
from adafruit_ads1x15.analog_in import AnalogIn
import threading
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import ColumnDataSource, Slider, TextInput, Button
from bokeh.plotting import figure
DEBUG = True
# Configure MUX for ADC
mux_io = [None] * 4
mux_io[0] = digitalio.DigitalInOut(board.D23)
mux_io[1] = digitalio.DigitalInOut(board.D22)
mux_io[2] = digitalio.DigitalInOut(board.D27)
mux_io[3] = digitalio.DigitalInOut(board.D17)
for ii, io in enumerate(mux_io):
io.switch_to_output()
# Configure ADC
i2c = busio.I2C(board.SCL, board.SDA)
adc = ADS.ADS1015(i2c)
adc_mux = AnalogIn(adc, ADS.P0)
adc_lock = threading.Lock()
# Configure Servo Driver
servos = ServoKit(channels=16).continuous_servo
servos[0].throttle = 0
servos[1].throttle = 0
servos[2].throttle = 0
# Initialize calibration
# TODO: save cal and load from file by default
white_cal = [0]*8
black_cal = [5]*8
def get_reflectivity(chan):
global mux_io
global adc_mux
global adc_lock
chan = int(chan)
mux = 1-np.array(list(f"{chan:04b}"), dtype=int)
adc_lock.acquire()
for ii, io in enumerate(mux_io):
io.value = mux[ii]
voltage = adc_mux.voltage
adc_lock.release()
return voltage
def get_normalized_reflectivity(chan):
global white_cal
global black_cal
return (get_reflectivity(chan) - black_cal[chan]) / (white_cal[chan] - black_cal[chan])
# Initialize brightness data
brightness_idx = np.arange(8)
brightness = [get_normalized_reflectivity(c) for c in range(8)]
# Initialize time data
time_data = np.empty((0, 3)) # [[t, e, c]]
# Create sources for plots
brightness_plot_source = ColumnDataSource(data=dict(sensor=brightness_idx, brightness=brightness))
time_plot_source = ColumnDataSource(data=dict(t=time_data[:,0], e=time_data[:,1], c=time_data[:,2]))
# Set up plots
brightness_plot = figure(plot_height=150, plot_width=400, x_range=[0, 7], y_range=[0, 1])
brightness_plot.line('sensor', 'brightness', source=brightness_plot_source, line_width=3)
brightness_plot.circle('sensor', 'brightness', source=brightness_plot_source, size=8, fill_color="white", line_width=2)
time_plot = figure(plot_height=400, plot_width=800, y_range=[-1, 1])
time_plot.line('t', 'e', source=time_plot_source, line_width=3, line_alpha=0.6, legend_label="e(t)")
time_plot.line('t', 'c', source=time_plot_source, line_width=3, line_alpha=0.6, legend_label="c(t)", line_color = "green")
# Controller thread
control_thread_run = False
def controller():
global brightness
global time_data
global servos
global control_thread_run
# TODO: make these parameters editable via network interface
sample_interval = 0.01
base_speed = 0.1
fir_taps = [1, -1, 0]
iir_taps = [0, 0]
time_data = np.zeros((max(len(fir_taps), len(iir_taps)), time_data.shape[1]))
motor_directions = [-1, 1, 0]
steering_sign = 1
# Precompute
this_time = 0
new_c = 0
motor_speed = np.array(motor_directions) * base_speed
while control_thread_run:
# Read error
brightness = np.clip([get_normalized_reflectivity(c) for c in range(8)], 0, 1)
line_position = np.sum((1 - brightness) * (np.arange(8) - 3.5)) / np.sum(1-brightness) / 3.5
if np.isnan(line_position):
line_position = 0
# Calculate output
new_c += fir_taps[0] * line_position
motor_speed += steering_sign * new_c
# Update motors
# for ii in range(3):
# servos[ii].throttle = motor_speed[ii]
# Log data
new_time_data = [[this_time, line_position, new_c]]
time_data = np.concatenate((time_data, new_time_data))
# Print data
if DEBUG:
for b in brightness:
print(f"{b:1.2f}\t", end="")
print(f"{line_position:+1.2f}", end="")
print()
# Precompute for next iteration
this_time = time_data[-1, 0] + sample_interval
c = time_data[:,2]
e = time_data[:,1]
new_c = np.sum(fir_taps[1:] * e[-len(fir_taps)+1:]) - np.sum(iir_taps * c[-len(iir_taps):])
motor_speed = np.array(motor_directions) * base_speed
# TODO: replace sleep statement with something that doesn't depend on execution time of loop
time.sleep(sample_interval)
control_thread = None
# Callback functions
def update_plots(attrname=None, old=None, new=None):
global brightness
global time_data
global brightness_plot_source
brightness_plot_source.data = dict(sensor=brightness_idx, brightness=brightness)
time_plot_source.data = dict(t=time_data[:,0], e=time_data[:,1], c=time_data[:,2])
def cal_white(attrname=None, old=None, new=None):
global white_cal
white_cal = [get_reflectivity(c) for c in range(8)]
update_plots()
def cal_black(attrname=None, old=None, new=None):
global black_cal
black_cal = [get_reflectivity(c) for c in range(8)]
update_plots()
def start_controller(attrname=None, old=None, new=None):
global control_thread
global control_thread_run
control_thread_run = True
control_thread = threading.Thread(target=controller)
control_thread.start()
def stop_controller(attrname=None, old=None, new=None):
global control_thread
global control_thread_run
try:
control_thread_run = False
control_thread.join()
control_thread = None
except:
pass
# GUI elements
cal_white_button = Button(label="Cal White")
cal_white_button.on_click(cal_white)
cal_black_button = Button(label="Cal Black")
cal_black_button.on_click(cal_black)
start_button = Button(label="Start")
start_button.on_click(start_controller)
stop_button = Button(label="Stop")
stop_button.on_click(stop_controller)
controls = column(cal_white_button, cal_black_button, start_button, stop_button)
curdoc().add_root(column(row(controls, brightness_plot, width=800), time_plot))
curdoc().title = "TriangleBot Control Panel"
curdoc().add_periodic_callback(update_plots, 250)